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Abstract. In this study, we compare the properties of self-referencing models, such as various site
dependent growth and yield models for predictions of height, diameter, basal area, volume, and density, de-
veloped using Nonlinear-Fixed-Effects (NFE) versus Nonlinear-Mixed-Effects (NME) modeling approaches.
The properties investigated include the following core traditional well-behaved model characteristics
applicable to self-referencing functions: Base-Age-Invariance, Path-Invariance, Indifference Under Model
Reparameterization, and Model Conditioning to have the predictions at the base-age equal to the reference
point, as well as estimation and prediction statistics such as bias and variance of the fitted versus predicted
residuals. The results of this investigation demonstrate that self-referencing models based on the NFE
approach possess all the desirable properties associated with logical behavior of the model and estimation
statistics, while the NME based self-referencing models lack the well-behaved model properties. We
illustrate these properties using an example of fitting self-referencing models to panel data of loblolly pine
age-height measurements on a range of sites from the South Africa Correlated Curve Trend Study.
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1 Background

1.1 Relevance of Self-Referencing Models and
Types of Data

The self-referencing models are equations that use as in-
put a point of reference defining the curve that passes
through the point, as in the case of initial condition
equations or boundary point solutions. Models based
on such equations enable the users to use existing snap-
shot observations from a given population to simulate
their dynamics more accurately than in the case of us-
ing broad population averages. The ability to use a
known value of a snapshot observation in prediction
models plays a vital role in the analysis of forest growth
and yield dynamics in forest management, especially in
monospecific even-age stands, such as tree plantations or
fire origin regenerated stand populations. Such ability
may be less critical but also helpful in other applications
(e.g., see Cieszewski et al. 2013, Eq. 8).

The self-referencing functions are calibrated on re-
peated measures data, and are applicable to all essential
stand characteristics such as height, diameter, volume,
taper, and density; they are used for modeling all sig-
nificant components of forest population dynamics in-
cluding every aspect of growth and yield, mortality, and
competition. The issues discussed in this article apply to
all such models based on self-referencing functions, but
for the clarity of the argumentation, we conduct this
discussion using an example model from just one of the
listed categories.

The height of dominant trees is an excellent exam-
ple of an application of the self-referencing modeling,
because tree height is a subject to functional changes
across both the cross-sectional and longitudinal dimen-
sions, while at the same time, the dominant or top
height is the most stable stand characteristic that is
less affected by crowding then other stand characteris-
tics (Raulier et al. 2003) such as diameter, tree volume,
taper, or mortality. The self-referencing site-height-age
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models, hereafter called site models, are an essential
component of the majority of growth and yield mod-
els in forestry and play an important role in forest
management decision making and planning. Nearly all
contemporary height growth models are based on self-
referencing functions using an available observation of
a population of interest, such as an inventory measure-
ment, to define the growth trajectory corresponding to
the subpopulation of interest.

Site models are typically developed either from stem
analysis data or permanent sample plot data. Stem anal-
yses usually provide longer time series records and allow
for more effective analysis of changes over time. On the
other hand, some practitioners argue that the perma-
nent sample plot data are more realistic because dom-
inant trees may change their positions over time either
due to environmental conditions or due to physical dam-
age (see Burkhart and Tomé 2012, section 7.3.3, for a
broader review of the salient literature on the subject).

Regardless of which data are used for the self-
referencing models they need to represent multiple se-
ries corresponding to different development potentials
(e.g., site quality) with individual levels of performance.
Since the different potentials are commonly unobserv-
able variables, in the sense that they cannot be measured
or observed explicitly, they are represented implicitly by
a snapshot observation of the performance potential of
any given series. The challenge in developing and fitting
self-referencing models to such data is making the model
capture unique characteristics of individual longitudinal
series while accounting for common characteristics of the
entire population. In practice, this can be accomplished
through subject-specific fitting of all the series simulta-
neously to a common model, in which some of the pa-
rameters vary between different individuals, subjects or
series.

Historically, there were various other approaches at-
tempting to solve this problem, most of which were de-
veloped for site-dependent-height-age models, and they
were evolving over time throughout the world. The sim-
plest way to develop a site-dependent height-age model
was fitting all the data to a mean curve, called the guide
curve, and then adjusting the resulting curve by scal-
ing it to pass through the reference point during the
model application. This method was not modeling the
characteristics of individual series and was eventually
abandoned in favor of predominantly the fixed-base-age
approach. The latter approach used one data point per
series, which was frequently interpolated, as a site qual-
ity indicator, in a similar manner as it is done in the
model implementation, treating this data point as the in-
dependent variable during the fitting of multiple curves.
This method failed to produce Base-Age-Invariant pa-
rameter estimates (BAIPar), resulting in inconsistent pa-

rameters for different choices of base-age, and conse-
quently, it has been largely abandoned. A more effec-
tive subject-specific approach was eventually adopted
by using the varying-parameter methods, such as the
Nonlinear-Fixed-Effects (NFE) modeling approach and
subsequently the Nonlinear-Mixed-Effects (NME) mod-
eling approach. Accordingly, most of the contemporary
self-referencing models are developed using one of these
two subject-specific approaches, and the purpose of this
study is to investigate the properties of their resulting
models and their predictions.

1.2 Self-Referencing Model Forms and Their
Properties

The main properties of the self-referencing models,
whether mathematical equations or algorithmic heuris-
tics, are the Base-Age-Invariant model predictions
(BAIPred), Model Conditioning (MC) to predict values
at a base age equal to the input values of the refer-
ence points, and Path-Invariance (PI). The PI property
is similar to BAIPred, but it has broader applications
including those in ageless models and difference equa-
tions. It means that the trajectory of height predictions
over time in iterations is unaffected by different selec-
tions of steps executed for the predictions, such as in
1-year versus 5-year iterations. This also means that
the projection of height from an initial age to middle
age and then to a final age results in the same final
height prediction as projecting the height at the final
age directly from the height at the initial or any other
age. This property results in consistent height predic-
tions regardless of the sequence in which they are sim-
ulated. Clutter et al. (1983) point out the desirability
of site index curves that pass through the site index at
base age, which is MC. All the above three properties es-
sentially mean that the self-referencing model generates
unequivocally identical curves using any point on the
curve, and they constitute the algebraic properties of
the model formulation rather than the statistical prop-
erties of the model parameter estimates as in the case of
BAIPar.

Self-referencing models can be based on different
mathematical equations. Early formulations of equa-
tions used for developing site models were incorporating
a fixed base age site index (e.g., H = f(A,S); where
S is site index), defined as a height at a fixed arbitrary
base age — usually 25, 50, 75 or 100 years. In prac-
tice, S in such models is not always consistent with the
definition, which may cause problems with the model
implementation.

Most contemporary mathematical formulations of
self-referencing models are based on either the Alge-
braic Difference Approach (ADA) of Bailey and Clut-
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ter (1974) or the Generalized Algebraic Difference
Approach (GADA) of Cieszewski and Bailey (2000),
who formalized the Cieszewski (1994) methodology.
ADA and GADA dynamic site equations have de-
sirable model properties including BAIPred, PI, and
MC, with curves that go through S at base age.
A substantially higher algebraic complexity of GADA
models, which are generally more complicated math-
ematically than the fixed base age site models, has
been somewhat a deterrent to their implementation.
Nonetheless, there are many developments using such
models (e.g., Adame et al. 2006, Cieszewski 2001–
2003, (De los Santos-Posadas et al. 2006, Diéguez-
Aranda et al. 2006a,b, Elfving and Kiviste 1997, Eriks-
son et al. 1997, Krumland and Eng 2005, Nord-
Larsen 2006, Rivas et al. 2004, Trincado et al. 2003).
On the other hand, many site models developed through
other approaches, such as fixed base age site index, may
not share the above properties.

1.3 Self-Referencing Model Parameter Estima-
tion Properties

The main properties of parameter estimation are BAIPar
and Invariance Under Reparameterization (IUR). These
are both statistical properties, which essentially mean
that the estimated parameter values are unaffected by
different selection of base age or by different parameter-
izations of the model forms used in model fitting.

Parameter estimation of site models has been evolv-
ing as much as the mathematical formulations. The
oldest statistical method was based on the guide curve
approach, which was merely fitting a mean height-age
curve, subsequently scaled down or up to predicts low
and high sites. Later subject-specific estimation meth-
ods were used to estimate the parameters of site models
by treating S as observable variable taken directly from
the data or data interpolations. The problem with this
approach of site model parameter estimation is that the
estimates of the site model parameters vary with differ-
ent selections of base age. Since there is no right choice
of base age for parameter estimation, this anomaly is a
pitfall of base age-specific parameter estimation, which
resulted in the eventual abandonment of this approach.

Bailey and Clutter (1974) introduced the application
of covariance analysis for BAIPar subject-specific pa-
rameter estimation. DuPlat and TraHa (1986) gen-
eralized this approach to nonlinear regression analysis
using dummy variables, which is the Nonlinear Fixed-
Effects (NFE) parameter estimation. Tait et al. (1988)
and Cieszewski et al. (2000) show alternative program-
ming approaches for implementation of the NFE subject-
specific parameter estimation, which is not readily avail-
able in most commonly used software. The main ad-

vantages of NFE parameter estimation are the desirable
BAIPar and IUR.

Biging (1985), Lappi and Bailey (1988), and Lappi
and Malinen (1994) have suggested using random pa-
rameter models for site model parameter estimation.
Then, Lindstrom and Bates (1990) introduced the NME
modeling approach, in which some of the parameters are
treated as having random effects assumed to follow a
random distribution (typically normal). Subsequently,
Fang and Bailey (2001) and Calegario et al. (2005)
among others advocated the use of the NME models
for various types of forest growth and yield modeling.

NFE and NME approaches are both varying parame-
ter methods, in which some parameters are common for
all data, and some are subject-specific and vary between
different series and are called hereafter site effects. The
principal difference between the two approaches is that
in the NME approach the site effects are assumed to
be random, or have random component, and therefore,
have to meet their distributional assumptions (e.g., nor-
mal distribution). In the NFE approach the site effects
have no restrictions and can assume any values needed
for the best fit, which means that, by definition, the NFE
models must fit any data as good or better than a sim-
ilar NME model. The same number of parameters can
be made subject-specific in either of these approaches.
Otherwise, the statistical models for both these subject-
specific approaches are in general very similar.

Finally, it should be noted that just about any type
of equation can be fitted with just about any type of
the fitting methods discussed earlier. This topic, how-
ever, is not a part of our study. We do not discuss
here such matters as, for example, fitting GADA mod-
els with guide curve or fixed base-age techniques, nor do
we intend to discuss in detail various methods of model
derivation or selection, which could be done with math-
ematics or fitting techniques, such as the NFE or NME
modeling approaches. This study is concerned strictly
with the comparison of fitting and predicting specific
self-referencing functions with the NME versus NFE ap-
proaches, which are principally similar to each other but
may vary in some of the well-behaved model properties
discussed in this article.

1.4 Self-Referencing Model Prediction Proper-
ties

The main properties of well-behaved self-referencing
model predictions are in part the same as for model
forms and algorithmic heuristics, and they are the
BAIPred, PI, and MC. Also, when considering model
prediction, we look closer at the way the reference point
is provided to the model and at the way the model is
commonly used in its implementation, such as how S is
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estimated, or what procedures are used for generating
the predictions, as in the NME models.

While it is conceivable that someone may occasion-
ally use a model for a tree or stand at an age equal to
the base age, such an event is generally unlikely. Thus,
predictions from fixed base age site models are gener-
ally obtained by first estimating or computing S values
from data available at different ages. Estimated S val-
ues are then used as the input for the model prediction
process to compute the height at the desired prediction
age. If the predictions are part of an iterative simula-
tion then the computed height is used to estimate S re-
peatedly through iterations (depending on whether the
model predicts height at base age are equal to S and how
compatible the estimation of S is with height prediction)
may or may not be BAIPred, PI, and MC. Thus fixed
base age site models vary in their behavior and proper-
ties. In particular, models that don’t have mathemati-
cally tractable solutions for S are prone to misuse and
ill-conditioned predictions. Rose et al. (2003) demon-
strated that an MC and BAIPred model (Cieszewski and
Bella 1989), even when it’s based on foreign data, pre-
dicts more accurate heights than a native, not MC and
not BAIPred, model that was fitted to the local data.

Predictions of ADA and GADA based models are com-
puted directly from height-age inputs. Those models are
by design conditioned to meet the desirable and well-
behaved model properties of BAIPred, PI, and MC.

In this study, we consider predictions from NME
models that can be generated through the use of
Best Linear Unbiased Predictors (BLUPS) or Empiri-
cal Best Linear Unbiased Predictors (EBLUPS). Since
the NME modeling has extensive software support in
SAS, making it easy to use even by inexperienced mod-
elers, and EBLUPS produce small variances and biases,
the NME modeling approach has been rapidly gaining
popularity among forest practitioners. Some develop-
ments utilizing the NME modeling approach include Do-
rado et al. (2006), Sharma and Parton (2007), Meng
and Huang (2009), Calegario et al. (2005), Fang and
Bailey (2001), Wang et al. (2007), Adame et al. (2008),
Calama and Montero (2004), and Saunders and Wag-
ner (2008).

The literature lacks information about the properties
of NME model predictions and their suitability for forest
management practices and operational use. The general
soundness of NME model EBLUPS predictions has not
been investigated in detail in the forest modeling com-
munity. The purpose of this study is to investigate this
subject and report the performance of the two subject-
specific approaches according to historically established
criteria for well-behaved model core properties.

1.5 The Objective of This Study

Our specific objectives were to use well-behaved self-
referencing equations, with mathematical properties of
MC and BAIPred of the fitted equation, to test the sta-
tistical properties of NFE and NME models with respect
to their:

1. BAIPar of model fitting, BAIPred of model predic-
tions, and IUR;

2. MC to predict height at the base age equal to S;

3. PI of the model predictions in iterative simulations;

4. The existence of any systematic deviations from the
expected outcomes; and

5. Logical model behavior.

2 Data

We used data from 15 plots in the South Africa Corre-
lated Curve Trend (CCT) study to illustrate the proper-
ties of the two types of models resulting from NFE and
NME modeling approaches. The data consists of mea-
surements replicated at three locations and were origi-
nally described in Strub and Bredenkamp (1985); and
therefore, they are not discussed here in detail. We used
plots thinned to 300, 200, 150, 100 and 50 trees per acre
before intra-specific competition for this study. Due to
the low densities of the plots, the data (Figures 1, 2
and 3) do not show any apparent trends resulting from
the differences in the stocking.

Figure 1: CCT data from Border, South Africa.
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Figure 2: CCT data from Kwa Mbonumbi, South Africa.

Figure 3: CCT data from Mac-Mac, South Africa.

3 Methods

3.1 Base Model Selection and Verification

To illustrate the differences between the NFE and NME
parameter estimation and predictions, we selected the
Schumacher (1939) function for the derivation of site
equations:

H = eα−
β
A (1)

where:

– H is stand height;

– A is stand age,

– α and β are model parameters; and

– e is the base of natural logarithms.

Cieszewski and Bailey (2000) discuss derivations of
several GADA models based on this function that are
derived by modeling different relationships between α
and β across the range of site qualities. One of the sim-
plest examples of their models is based on the linear rela-
tionship between the function parameters, which can be

accomplished by modeling each of them as proportional
to an unobservable variable X (e.g., α = X; β = γX)
(see Cieszewski and Bailey 2000 Eq. 14). This is the ba-
sis for our comparative analysis of differences in model
behavior in NFE versus NME parameter estimations and
NFE versus NME model prediction approaches.

Following this example we reparameterized Cieszewski
and Bailey (2000, Eq. 14) to a two-parameter site-height-
age base model:

H = eX− γX
A (2)

where:

– X is an arbitrary unobservable variable of unknown
magnitude that varies with site quality, or plot, or
growth series, and which needs to be estimated by
using empirical data; and

– γ is the new global parameter that is common to all
growth series and is estimated simultaneously with
the estimation of X using empirical data.

Cieszewski and Bailey (2000, Eq. 15) recommend fur-
ther reparameterization of the GADA formulation us-
ing the expected value parameterization originally pro-
posed by Schnute (1981) and Ratkowsky (1990) which
improves parameter estimation properties. We further
modified the model to its implicit form using data-
related reference points instead of the explicit unobserv-
able variable X. The expected value parameterization
of Equation (2) requires solving for X (X =f(H, A))
and then substituting the solution with specific value
X0 =u(H0,A0) for X in Equation (2), which results in
the following implicit dynamic equation:

H = e
ln(H0)(A0

A )
(
A−γ
A0−γ

)
(3)

where:

– A0 is an arbitrary reference age;

– H0 is an arbitrary reference height, such as S; and

– all other symbols are as previously defined.

3.2 The NFE Site Models

To use more traditional terminology, we denote H0 as
S and the base age as A0. Then, ln(S) is the natu-
ral logarithm of S, and only S varies by growth series.
This formulation is commonly known as a fixed-base-
age site model, except that in our formulation the base
age is a variable and can be changed without affecting
the equation properties as long as S corresponds to a se-
lected base age. We will use both formulations of explicit
Equation (2) and implicit S Equation (3).

The distinct characteristic of the NFE models is that
only some of the model parameters are common for all
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Table 1: Global parameter estimates and residual of sum of square errors (SSE) for NFE and NME models.

NFE Models NME Models
Eq. 4 Eq. 5 Eq. 6 Eq. 7

A0 N/A 5 25 50 N/A 5 25 50

γ 2.99208 2.99208 2.99208 2.99208 2.99184 2.99191 2.99181 2.99179
SSE 163.4152 163.4152 163.4152 163.4152 163.4438 163.4435 163.4449 163.4452

series while the others, such as site effects, vary between
the series. In statistical notation the explicit site-height-
age Equation (2) fitted as a NFE model can be expressed
as:

Hij = e
Xi−

γXi
Aij + εij (4)

where:

– i denotes individual growth series,

– j is an individual age within a growth series; and

– εij is an independent normally distributed error
term with mean zero and variance σ2.

The fitting form of the implicit dynamic site-height-
age Equation (3) becomes:

Hij = e
ln(Si)

(
A0
Aij

)(
Aij−γ
A0−γ

)
+ εij (5)

where Si is the site index at base age A0 and is esti-
mated from the data. All other notation is as previously
defined.

3.3 The NME Site Models

What distinguishes the NME models from the NFE
models is that they have an additional constraint that
the varying parameter, or site effects Xi consists of a
sum of its mean value and individual-specific deviations
Ui, which are called random effects and must be ran-
domly distributed. This, in addition to the estimation
of the global model parameters, requires estimation of
the mean and variance parameters for the assumed, typi-
cally normal, distribution, potentially additional covari-
ance parameters for multiple random effects, and im-
poses constraints on what values the site effects can as-
sume so that they conform to the assumption of the
randomly distributed site effects.

The NME models are derived by substituting for the
NFE, Xi that vary by growth series, or Si, with a ran-
dom parameter X + Ui or S + Ui. X and S are mean
values for all growth series, and Ui is a random normal
deviant with mean zero and variance σ2

U . Accordingly,
the explicit Equation (2) fitted as the NME model can
be statistically defined as:

Hij = e
X+Ui−

γ(X+Ui)
Aij + εij (6)

and the implicit dynamic site-height-age Equation (3)
fitted using NME modeling can be written as:

Hij = e
ln(S+Ui)

(
A0
Aij

)(
Aij−γ
A0−γ

)
+ εij (7)

where all the symbols are as previously defined.

3.4 Model Parameter Estimation and Model
Predictions

We fit both of the NFE models (4) and (5) with the SAS
NLIN procedure (version 9.3). We tested the fitting of
the NFE Equation (4) directly, estimating Xi individ-
ually for each growth series. We also tested the fitting
the NFE Model (5), estimating Si individually for each
growth series and each of base ages: 5, 25 and 50 years.
The NFE model parameter estimation is straightforward
and can be computed with the SAS NLIN procedure
(version 9.3) or Excel using the Solver Add-in.

Using the NFE site Equation (5) we computed pre-
dictions for heights directly at ages 1 through 50 from
the parameter estimates (Table 1) base ages 5, 25 and
50 and a range of S.

We fit both NME models (6) and (7) with the SAS
NLMIXED procedure (version 9.3) using the assumption
of normally distributed random effect.

After fitting the NFE and NME models, we exam-
ined the results of parameter estimation and sum of
squared residuals. The primary objective of this exami-
nation, however, was to identify any parameter estimate
discrepancies between estimates based on different base
ages and model parameterizations, since it was evident
that the NFE must always produce lower sum of squared
residuals than the NME models.

Predictions consistent with the assumptions of the
NME models are more complicated and involve op-
timization and numerical integration. We used the
TECH=None option in the SAS NLMIXED procedure
along with parameter estimates from the original dataset
to estimate height at the same ages, base ages and
range of S as in the case of the NFE model. The SAS
NLMIXED procedure with TECH=None option is a bet-
ter alternative than the BLUP or EBLUP method usu-
ally reported because it does not require a Taylor Series
approximation used to derive the BLUP and EBLUP
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estimates, but instead maximizes the likelihood numeri-
cally. Since S values that are not constrained to be equal
to height at base age affect model behavior and its pre-
dictions we compared S values computed with the NME
model with the conditioned S values of the NFE models.

Finally, since the use of growth models in multiple
steps is more a standard than an exception we also tested
the NME model predictions in multiple steps to illus-
trate the impact of lack of model conditioning for PI of
model predictions.

4 Results

4.1 Model Assumptions

The model of Cieszewski and Bailey (2000 Eq. 23) that
was used (Eq. 2 and 3) for testing differences between
the NFE and NME modeling approaches implies a lin-
ear relationship between the parameters of the Schu-
macher’s (1939) base Equation (1). Verification of this
assumption was shown by fitting the base Equation (1)
to all the individual growth series and analyzing the rela-
tionship between the parameter estimates. Examination
of the parameter estimates from the fitting of Model (1)
to individual growth series showed a reasonable linear
relationship (Figure 4) between the parameters across
the available range of site qualities for the CCT dataset.
The fifteen pairs of parameter estimates conformed well
to a linear relationship between the parameters with a
good fit of the linear function with R2 of 0.839, which
warranted our choice of the model for the analysis. The
intercept was not significantly different from zero.

y = 2.9966x
R2 = 0.839

9

9.5

10

10.5

11

11.5

12

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

alpha

be
ta

Figure 4: The relationship between parameter estimates
of α and β in the Schumacher (1939) model for the South
Africa CCT data.

4.2 Model Fitting

As expected, fitting the implicit NFE Model (5) to all
data using different base ages resulted in identical pa-
rameter estimates regardless of the different selections

of base age. To the contrary, the parameter estimates of
the implicit NME Model (7) varied with a different selec-
tion of base age from 2.99179 to 2.99191 (Table 1), which
demonstrates the lack of BAIPred in the NME modeling
approach to parameter estimation.

Fitting the explicit formulation NFE Model (4) results
in identical parameter estimation (Table 1) to estimates
with the implicit formulation of the NFE Model (5) prov-
ing this NFE to be IUR. To the contrary, fitting the
explicit formulation of the NME Model (7) results in
different parameter estimates from fitting the implicit
formulation of the NME Model (6), which demonstrates
the lack of IUR of the NME modeling approach to pa-
rameter estimation.

As expected, the SSE was the smallest and identical
in all the IUR NFE fitting of different model parameter-
izations. The SSE for the NME fitting is only slightly
larger than the one resulting from the NFE fitting, which
indicates that the normality assumption with regards to
the random effects proved to be suitable for this data.

4.3 Model Predictions

All predictions of NFE models generated consistent
curves regardless of the selections of base age (Fig-
ures 5, 6 and 7) and predicted the heights at the base
age equal to S; and therefore, the NFE model parameter
estimation proved to be BAIPred, PI, and MC.

Figure 5: Fixed-Effects model curves (solid line) and
Mixed-Effects model curves (dashed line) for base age
50 parameter estimates and site indexes 10, 20, 30, 40
and 50.

The NME model predictions generated using the
TECH=None option in SAS NLMIXED procedure var-
ied with different selections of base ages and site quality,
for which the predictions were made, which demonstrate
the lack of BAIPred in NME model predictions. The
NME model predictions also failed to predict heights
equal to S used to generate the predictions and devi-
ated from the input reference point varying with both
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Figure 6: Fixed-Effects model curves (solid line) and
Mixed-Effects model curves (dashed lines) for base age
25 and site indexes 10, 15, 20, 23.6, 30, 35 and 40.

Figure 7: Fixed-Effects model curves (solid lines) and
Mixed-Effects model curves (dashed lines) for base age
5 and site indexes 3, 3.5, 4, 4.2, 4.5, 5 and 5.5.

the base age and site quality; and therefore, it failed to
be MC. Figures 5, 6 and 7 illustrate the results of gen-
erating NME model predictions for the assumed range
of site qualities using the base ages 50, 25 and 5.

The smallest departure from expected prediction
trends and from the height at the base age different from
S was observed when the base age was high (Figure 5).
For base age 50, the random curves were only slightly
compressed toward the center mean curve. Only the
global mean curve passes through S at base age; the
other curves come very close to the height equal to S
values at base age. In comparison, the NFE models pass
through S at the base age in all scenarios.

As S base age used for generating the curves decreases
the compression of curves towards the mean and depar-
ture from the height at base age equal to S grows larger.
For base age 25 (Figure 6) the random curves were no-
ticeably more compressed toward the center mean curve
than for base age 50. Only the global mean curve passes
through the height at base age equal S; although the
other curves still come quite close to S at base age. As

expected the NFE model passed through S at base age
and generated the same curve as Figure 5.

For base age 5, the NME model curves were strongly
compressed toward the center mean curve (Figure 7) and
had large deviations at the base age from the input S
values. Only the global mean curve passes through S at
base age. As in all the other cases the NFE models pass
at the base age through S values for all sites.

Using the model to simulate step predictions (Fig-
ure 8), as is frequently used in forest management prac-
tices, demonstrates that NME site model predictions fail
to be PI in predictions for low and high sites; they are
only PI at the global mean curve (the middle curve in
Figure 8). The estimates for both high and low site qual-
ity data are biased towards the mean, which means that
they are systematically underestimated for high sites
and systematically overestimated for low sites, failing
PI for predictions outside the global mean site.

Figure 8: Base age 25 Mixed-Effect model S parameter
estimates used to project from age 5 to age 6 and 7, and
from age 6 to age 7.

5 Discussion and Conclusion

The results shown above are surprising since NME mod-
els have been studied extensively in Forest Biometrics re-
search by theoretical statisticians and applied biometri-
cians alike (e.g., Laird and Ware 1982, Leites and Robin-
son 2004, Meng and Huang 2009, Yum and Xu 2004,
Hall and Bailey 2001). A number of scientists have
also investigated the differences between the NFE and
NME modeling approaches applied to various opera-
tional problems (e.g., Temesgen et al. 2008, Weiskit-
tel et al. 2009), for comparing sampling designs (Segura-
Correa et al. 2008), and predictions of sawmill dust expo-
sure (Friesen et al. 2002). There have been some reports
cautioning users of NME modeling about their limita-
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tions and justifying development of sound model forms
(Kershaw et al. 2009). Overton (1998) compares both
approaches and concludes that they both have prob-
lems but that NME models can significantly overesti-
mate variances when based on untenable assumptions.
This is a peculiar finding because the assumptions about
distributions of arbitrarily chosen nonlinear model pa-
rameters are approximations at best (e.g., a distribu-
tion of a value reaching from plus to minus infinity).
Paulo et al. (2011) compared NFE and NME models
for cork oak stands and noticed an overestimation of
low diameter classes and underestimation of high diam-
eter classes by the NME model. Still, the authors re-
ported that overall the NME model performed better
than the NFE model. Finally, Wang et al. (2008) failed
to find any significant differences between the two types
of model predictions applied to empirical data from pine
after comparing both methods.

NME models are commonly advocated as robust and
flexible. When compared against the NFE models the
NME models are often claimed to be more flexible. Such
claims are based on an ill founded assumption that the
NME models can estimate more parameters as subject-
specific. Indeed, some practitioners have fit NME site
models specifying all of the model parameters as hav-
ing random effects. Of course, the same can be done
with respect to NFE models by defining all parameters
as having subject specific fixed effects; although, such
modeling just has not been found useful due to the lack
of parsimony. Overall, the NFE modeling is by definition
more flexible than the NME modeling approach since all
the same functionalities such as different error structures
(e.g., AR1, AR2, etc.) can be applied in either of the ap-
proaches, but the NME approach has more restrictions
imposed regarding the distributional properties of the
site effects.

We have compared the properties of the two contem-
porary approaches to self-referencing modeling in terms
of the core well-behaved model criteria. To improve the
quality of the predictions we used the TECH=None op-
tion in SAS NLMIXED procedure to estimate height at
the same ages, base ages and range of S as in the case
of the NFE model.

Our results reveal unexpected outcomes from the ap-
plication of the NME modeling (not discussed in any
earlier forestry literature on the subject). These out-
comes throw a negative light on the interpretation and
operational value of the NME modeling approach and
confirm the well-behaved properties of the NFE mod-
eling approach. In our analysis the NFE models were
shown to have proper behavior regarding: BAIPar, MC,
and IUR in model fitting; and BAIPred, PI, lack of any
systematic deviations in model predictions, and logical
behavior.

To the contrary, testing the NME modeling approach
demonstrated that the NME model lacked all the above
properties. The NME modeling approach appears to be
base age variant similar to fixed base age site model pa-
rameter estimates, varying with different selections of
base ages used in the fitting process; the NME model
parameter estimation resulted in inconsistent parame-
ter estimates dependent on the model parameterization.
This means that while the NME model estimates should
depend only on the data and statistical assumptions, in
case of the NME models it also depends on how the same
model might be written or codded, which is undesirable
since the parameterization of nonlinear models is strictly
arbitrary and frequently subject to convenience, tradi-
tion, or coincident. The NME model predictions fail to
be BAIPred, MC, PI, and IUR. In an environment of it-
erative simulations, the NME models produce different
growth trajectories depending on a programmer or tech-
nician choice of the length of iteration steps. While the
predictions of the NME models have overall low vari-
ance and small bias they systematically underestimate
high sites and systematically overestimate low sites.

NME modeling is the state-of-the-art approach in the
statistical theory, and it has many useful applications;
however, self-referencing modeling is not one of them.
From a theoretical point of view, NME models are not
suitable for most forestry self-referencing modeling for
various principal reasons in addition to lacking the well-
behaved model properties. The data in forestry that
are used for growth and yield self-referencing modeling
are practically never random, but rather they are col-
lected according to a model based design, typically with
emphasis on uniform rather than random representation
of sites and maximum practically achievable representa-
tion of old ages. The other reason is that it is typical
in forestry modeling to use various model parameteriza-
tions of the same equations, which due to high nonlin-
earity can be sometimes reparameterized even between
different model fittings just to change the model parame-
ter characteristics or the search behaviour. Experienced
modelers may explore such parameter transformations
as for example p1 =⇒ ln(p2) =⇒ ep3 =⇒ p24 =⇒
1
p5

, etc., to help with the model solutions to nonlinear
searches or the estimates’ characteristics.

In addition to BAIPar, MC, and IUR, the NFE mod-
els as expected fit the data better with smaller SSEs.
This is because the fitting process of the NME models
imposes the additional constraint that the random effect
Ui must follow an arbitrary assumption of randomness,
which means that it must always have larger or equal
sum of square errors when the same models are fitted
to the same dataset as the NFE site models without the
constraint. NFE self-referencing models ensure logical
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behavior, well-behaved model properties, and the uni-
form unbiased representation of low and high sites.

Acknowledgements

We are grateful to two anonymous reviewers and Prof.
Harold Burkhart, who served as Referees for this
manuscript, for providing valuable comment that helped
to improve the manuscript.

References

Adame, P., Canellas, I., Roig, S., & Del Ŕıo, M.
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