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Abstract.A Bayesian probabilistic modeling platform was used and evaluated for application in a
relatively complex individual-tree growth and yield model for coastal Douglas-fir (Pseudotsuga menziesii
var. menziesii (Mirb.) Franco), which was expressed as a mixed discrete and continuous Bayesian Network
for annual projections. The modeling platform used a common and open-source Bayesian analysis program
(JAGS v3.3.0), and was sufficiently flexible to handle a relatively complex model structure; namely, a dif-
ferential form, highly dynamic, recursive, hierarchical, non-linear system of equations with rather complex
error structures. This novel probabilistic modeling platform met certain desirable criteria, including: (1)
accurate and tractable projections that included full error propagation; (2) flexible and comprehensive
analytic capabilities; (3) full consideration of hierarchical and multi-level model structures; (4) capacity
for random effects calibration; (5) allowance of hypothesis testing and updating knowledge across different
system components, simultaneously with varying sources of information (i.e., new data); (6) computational
efficiency; and (7) relatively simple implementation as demonstrated in a compiled scripting language.
Probabilistic projections of forest growth and yield included all sources of errors and uncertainty (e.g.,
estimated parameters, state variables, random effects, and residual errors). Cumulative error projections
over a 40-year period for three sample Douglas-fir stands were determined. Projection errors for key
metrics summed across all trees, such as total basal area and stem density, had coefficient of variations
between 4-6% and 7-8%, respectively. Probabilistic projections were markedly different from deterministic
projections made with the same model structure. Overall, this novel probabilistic platform showed strong
promise as a general platform for ecological modeling, particularly when tractable and analytically correct
error projections are required. In particular, the Bayesian probabilistic modeling approach used provided a
natural platform for cross-disciplinary research, particularly between social and ecological research domains.

Keywords: forest growth and yield, error propagation, model uncertainty, error budgets, individ-
ual tree growth models, coastal Douglas-fir, Oregon, Washington.

1 Introduction

Ecological modeling is dominated by deterministic ap-
proaches, particularly in forestry (Canham et al. 2003,
Weiskittel et al. 2011). The structure of the modeling
equations is dependent on the system being modeled as
well as the objectives, and so it varies considerably be-
tween published models. Such models are ubiquitous
in ecological research, with examples ranging from pro-

jecting animal and plant meta-population dynamics, to
process-level vegetation growth, food chains, plant suc-
cession and migration, and disturbance risk, as well as
social and economic dynamics linked to ecological pro-
cesses (An 2012). Notably, we do not include agent-
based models (Epstein 2006) or models of purely phys-
ical processes (e.g., fire dynamics or weather), which
can be viewed as more stochastic implementations. In
contrast, most ecological models take a difference equa-
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tion approach with a discrete time or spatial step, al-
though systems of differential equations are not uncom-
mon (Arnold et al. 1998). While many ecological models
incorporate stochastic elements (e.g., weather, mortality
events), these discrete elements are usually embedded
within an otherwise deterministic framework.

Forest growth and yield (GY) models have a long
history of development and are prime examples within
a field dominated by difference-form, deterministic
approaches (Pienaar and Shiver 1986, Weiskittel et
al. 2011). The current challenges in forest GY mod-
eling serve as an illustration for the broader field of
ecological modeling. Forest GY models are ubiquitous
in forestry, with particular use in economic forecasting,
designing silvicultural systems, risk management, har-
vest scheduling, forecasting fiber supply, carbon dynam-
ics, and ecosystem management (LeMay and Marshall
2001). The structure of forest GY models vary, but the
majority were designed as a system of equations that
sequentially predict structural attributes from inventory
data and variables previously projected by the model.
Forest GY models have variable time steps, but an an-
nual interval is often preferred for a variety of reasons
(Weiskittel et al. 2011). Similar to temporal resolu-
tion, forest GY models can also have different spatial
resolutions ranging from individual trees to stand at-
tributes with increasing focus on higher spatial resolu-
tions (Weiskittel et al. 2011). Consequently, individ-
ual tree-level models with an annual temporal resolu-
tion have become the primary focus for both research
and practical implementation (e.g., Kershaw et al. 2017;
Weiskittel et al. 2016a, 2017).

Within a forest GY model, a variety of component
equations that sequentially predict tree- or stand-level
attributes (e.g., tree diameter or live stem density) are
used. Most often, these equations are fitted indepen-
dently and then sequentially linked post hoc. The com-
ponent equations are also often strongly non-linear, and
may have correlated residuals across component equa-
tions. While simultaneously modeling systems of equa-
tions to account for correlated errors has been used in
this past (e.g., Hall and Clutter 2004), this method is
usually used only for a subset of the equations. As a
consequence, estimates of prediction error are generally
lacking due to the complexity of the system of equa-
tions. In fact, most forest GY models provide no esti-
mate of projection uncertainty and relatively few studies
have attempted to address this for forest management–
orientated models (e.g., Gertner et al. 1996; Green et
al. 1999; MacFarlane et al. 2000; McGarrigle et al. 2013;
Kershaw et al. 2017).

Furthermore, ecosystem management has progressed
to the point where traditional forest GY projections of
total volume or diameter distributions are no longer suf-

ficient (McComb et al. 1993). Many ecosystem dynam-
ics and structural elements are highly stochastic both
temporally and spatially. Consequently, they are often
not very well represented within a deterministic model-
ing framework. An example is modeling the understory
vegetation composition and dynamics that are an impor-
tant habitat component for many small mammals and
songbirds (Wilson and Puettmann 2007). Vegetation re-
sponse to thinning is strongly tied to pre-treatment con-
ditions, which are highly variable and largely unrelated
to current overstory conditions (Wilson et al. 2009).
As such, modeling vegetation within existing forest GY
models becomes extraneous when vegetation predictions
are largely independent of tree growth. Many simi-
lar information needs for ecosystem management sim-
ply do not fit within the current GY framework and,
as a result, such modeling efforts have progressed inde-
pendently (e.g., Running and Gower 1991, Scheller et
al. 2007) rather than collaboratively.

In this study, we highlight the utility of a probabilistic
modeling platform for addressing many of the challenges
common to ecological models. We re-parameterized an
individual-tree GY model (DF.GOAB) for plantation-
grown, coastal Douglas-fir (Pseudotsuga menziesii
(Mirb.) Franco var. menziesii ; Weiskittel et al. 2007)
to demonstrate the advantages of this approach. The
model platform is a continuous-node form of a Bayesian
Network (Pearl 1988) that we updated (i.e., projected)
using current tree- and stand-level structural informa-
tion along with Bayes’ theorem. The results are pre-
sented as posterior distributions, which are computed
numerically with a Markov Chain Monte Carlo (MCMC)
sampling approach. Unlike deterministic models, updat-
ing the model is efficient with stochastic elements, which
can exponentially increase the computational require-
ments. Component equations, such as dominant height
growth or mortality, are ideally developed using con-
temporary Bayesian parameter estimation approaches
(Gelman et al. 2013), but this is not a strict require-
ment. These component equations can take almost any
form, including continuous or discrete, linear and non-
linear functions or distributional states. Error structures
can include Gaussian and other exponential families, but
also non-standard user-defined distributions, as well as
hierarchical structures. Similar approaches to quanti-
fying uncertainty using a Bayesian approach have been
previously demonstrated in other disciplines (e.g., Freni
and Mannina 2010) yet remain uncommon in forest sci-
ence.

Because our study focuses on the modeling platform
and not on developing the GY model equations or struc-
ture, we adopted model forms from a previously de-
veloped GY model as an example system (DF.GOAB;
Weiskittel et al. 2007). The probabilistic modeling plat-



Wilson et al. (2019)/Math.Comput. For.Nat.-Res. Sci. Vol. 11, Issue 2, pp. 264–285/http://mcfns.com 266

form is quite general, so we do not attempt to fully
present here the model details or assess prediction ac-
curacy with independent data. Instead, our primary
objective is to contrast the probabilistic approach with
current practices (i.e., deterministic and quasi-stochastic
modeling approaches). We also will demonstrate several
instances where deterministic and probabilistic models
potentially have different projections. First, we present
the probabilistic modeling platform and how projections
are made, and then how the revised DF.GOAB model is
portrayed in a Bayesian Network.

2 Methods

2.1 Bayesian probabilistic modeling platform

The Douglas-fir GY modeling system we chose to il-
lustrate this approach is typical for this class of mod-
els, and representative of approaches taken in many ter-
restrial vegetation dynamics models. The component
equations are a mixture of linear and non-linear equa-
tions, with weighting and multiple hierarchical random
effects, and have a discrete time-step. In deterministic
approaches, the estimated equation parameters are typ-
ically fixed at the value of their point estimates, often
with some level of stochasticity to predict categorical
variables such as mortality. Most systems of equations,
including the ones in this study, are highly recursive,
with predicted variables used as predictors in subsequent
time-steps. These approaches ignore the uncertainty in
the estimation of both parameters and predicted vari-
ables, and the stochastic component of the models equa-
tions (Dennis et al. 1985). To address these issues, the
system of equations used in the study was fitted to an
existing database of Douglas-fir growth, and then por-
trayed in a Bayesian probabilistic modeling platform.
We used a mixed categorical- and continuous-node form
of a Bayesian Network (Pearl 1988, Nielsen and Jensen
2009).

There is a large literature on contemporary Bayesian
parameter estimation, and since the model projections
follow the same methodology, we focus our explana-
tion on where the applications (parameter estimation
versus model projections) differ. Models are expressed
similarly in both Bayesian Networks and in contempo-
rary Bayesian parameter estimation as directed acyclic
graphs (DAG; Nielsen and Jensen 2009). This approach
allows very complex models, including hierarchical mod-
els and systems of equations, to be expressed as a se-
ries of conditional distributions defined in a parent-
child relationship (Wikle 2003). Specifically, the full,
joint probability distribution for the entire model can
be written as the product of conditional distributions,
P (x1, ..., xn) = Πn

i=1P (xi|pa(xi)), where, xi is the full
suite of variables, and pa(xi) represents the parents of

xi. This relatively simple factorization allows complex
models to be described through simpler marginal prob-
abilities, and thus estimate individual components sep-
arately, while retaining connectivity throughout the en-
tire model.

Models in a Bayesian framework for both parameter
estimation and model projections take the same gen-
eral form in that parameters are represented as random
variables with an associated prior probability distribu-
tion, with the model structure expressing the form of the
likelihood. The contrast between Bayesian parameter es-
timation and model projections in a Bayesian Network
are: (1) parameters in a Bayesian Network are expressed
as highly informative priors with means and standard er-
rors for the parameters usually taken from fitted equa-
tions and (2) the Bayesian Networks do not necessarily
include new data to update the priors. Projections are
made for “child” variables based on parent-child hierar-
chy (i.e., model structure), which is expressed as a series
of conditional probabilities defined by the DAG. These
generally include state variables as well as parameters
estimates and all sources of error. Posterior distribu-
tions for projected variables are computed numerically
with a Markov Chain Monte Carlo (MCMC) sampling
approach since most model forms do not have a closed-
form analytical solution. This MCMC approach to a
Bayesian Network is not a traditional discrete-state type
but is more a type of efficient random-walk first toward
and then within the stable posterior distribution (Cappé
and Robert 2000). The MCMC approach is automati-
cally contained within the stable posterior distribution
when no new data are included.

Model projections without new data are essentially
infilling of “missing” model response data, where pro-
jections of tree- and stand-level variables over time (as
in our study) represent these missing data. If some of
this data becomes available, it can be provided to the
model, which allows for simultaneous updating of model
parameters (e.g., random effect calibration, state or la-
tent variable estimation, etc.). Also, different types of
new data will update different model parameters (in-
cluding error parameters) depending on the structure of
the model (Wilson et al. 2009) because systems of equa-
tions are represented simultaneously in Bayesian Net-
works. Here, we describe projections as missing data to
underscore how projected responses from the model are
conditionally related to the model parameters and state
variables.

In Figure 1, the entire GY model is represented as
a Bayesian Network, which is functionally very similar
to contemporary Bayesian parameter estimation meth-
ods, with the exception that the entire system of equa-
tions is represented together. Blending new data within
Bayesian Networks is quite common, and further blurs
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the lines between the two approaches (Clark and Gelfand
2006, Wilson et al. 2009). Within the Bayesian Network,
projections are made for each tree over each projection
year. This projection on an “annual time step” is a slight
misnomer in a Bayesian Network since each iteration of
the Markov chain updates every tree for every year in
the projection. Thus, 1,000 MCMC iterations does not
represent a 1,000 year projection, but rather 1,000 sam-
ples from the posterior distribution, with each sample
containing a full set of projections for every tree and
year combination. The MCMC iterations collected for
each variable comprise the marginal posterior distribu-
tions. For simplicity, the model parameters, residuals,
and prior distributions are all assumed to be uniformly
normal in this analysis. This assumption might be im-
portant as some of the parameters and residuals may not
be normally distributed given the complex non-linearity
of the models used. In addition, the wrong prior distri-
bution can lead to incorrect estimations of uncertainty
in modeling results (Freni and Mannina 2010).

2.2 Dataset

Data from 65 University of Washington Stand Man-
agement Cooperative permanent research installations
in Oregon and Washington, USA, and Vancouver Is-
land, British Columbia, Canada were used for analy-
sis. These installations cover a wide range of growing
conditions typical of the region. The overall climate is
humid oceanic, with a distinct dry summer and a cool,
wet winter. The twenty-year mean annual rainfall for
these locations ranged from 91 to 293 cm (18–32% oc-
curring during the growing season), and January and
July mean temperatures ranged from -2.7 to 6.7°C and
14.7 to 19.2°C, respectively. Variation in precipitation
and temperature are strongly related to elevation and
distance from the coast. Elevation ranged from 5 to
1160 m above sea level, slope was between 0 and 60%,
and all aspects were represented. Soils varied from a
moderately-deep sandy loam to a very deep clay loam
with mean water holding capacity of 139 ±63 mm (45 –
303 mm).

Since its establishment in 1985, the Stand Manage-
ment Cooperative (SMC) at the University of Wash-
ington (http://www.cfr.washington.edu/research.smc/)
has maintained a database representing 435 installations
in British Columbia, Washington, and Oregon (Maguire
et al., 1991). In this study, we focus on a subset of these
data, restricted to pure, plantation-grown Douglas-fir
in western Oregon, Washington, and British Columbia;
specifically, Douglas-fir plantations extracted from the
Type I, II, and III installations. Type I installations are
square 0.2 ha plots established in existing plantations
that have received designed sets of silvicultural treat-

ments since plot establishment in the late 1980s and
early 1990s. Type II installations are square 0.2-ha plots
that were installed between 1986 and 1991 in stands ap-
proaching commercial thinning age and received differ-
ent levels of commercial thinning treatments. Type III
installations were established between 1985 and 1990 as
initial spacing trials with six densities ranging from 247
to 3048 trees per ha. Plot size for Type III installations
varied from 0.086 ha at the highest density to 0.202 ha at
the lowest density. For this analysis, only the untreated
(i.e., control) plots in the Type I, II and III installations
were used, resulting in a model fitting database of 167
plots across 65 installations.

At each plot, individual trees were tagged and mea-
sured for diameter at breast height (D) with a subsam-
ple of trees measured for total height (HT) and height
to crown base (HCB). Common variable definitions and
abbreviations are given in Table 1. Plots were generally
re-measured on a 4-year interval (range 2-8 yrs; Table 2).
A subsample of trees were measured for HT and HCB on
each plot, but with the exception of estimating missing
heights to compute dominant height (HD), only directly
measured variables were used in equation fitting.

2.3 Growth and yield equations

Forest GY models have a long tradition of develop-
ment and use in forestry (Weiskittel et al. 2011). They
are designed to project tree- or stand-level growth over
time beginning with a discrete starting condition, often
taken from a field-measured inventory. These models
are fundamentally similar to many terrestrial vegetation
and wildlife models, different only in the model focus
(tree growth, soil organic matter, wildlife populations
size, etc.) and data describing starting conditions.

We modified a previously published system of equa-
tions developed to project GY of individual Douglas-fir
trees on an annual time-step (DF.GOAB; Weiskittel et
al. 2007). This system of equations was derived from
model forms used in the ORGANON-SMC GY model for
coastal Douglas-fir (Hann et al. 1993, 2003). Model vari-
ables are either measured in a field inventory at the start
of the projection (t0), projected for time step t, or de-
rived (Table 3). The primary projected variables are HD
at the stand-level, and D, H, HCB and survival at the
tree-level, with stand- and tree-level derived variables
as model covariates. The system of equations is deter-
ministic and highly recursive, which is common among
terrestrial vegetation models (Canham et al. 2003). As
in most forest GY models, tree growth is projected based
on predicted site quality and stand structural character-
istics. Site quality is represented by the projected height
growth trajectory of the dominant trees, which is gen-
erally insensitive to stem density. The site index (SI)
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Figure 1: Structure and inter-relationships between model inputs, equations, and outputs for the Douglas-fir growth
and yield (GY) model framework used in this analysis.

is then the expected height of the dominant trees at a
reference age, taken as 25 years from planting for this
study. Dominant height was predicted using a Hossfeld
function fitted as a non-linear difference form equation,

SI =
Age2

SI

AgeSI

(
Age10

HD10
+ α11

)
+ α10

Age10
+

+ α11Age10 + α10

+ εSI (1)

where α10 are estimated parameters, Agesi is the site
index age (25 years from planting in this study), Age0

is the breast-height age at the initial inventory, HD0

is the dominant height at the initiation inventory, and
residual error is weighted by projection period, εSI ∼ N .
SI was estimated for each plot and then averaged for an
installation.

It is assumed that all trees were measured for the ini-
tial diameter, D0 , in the initial inventory. However, H
and HCB were only measured on a subsample of trees.
Unmeasured individual tree heights, Hi for tree i at the
start of the projection (t0), were estimated with a power
function and transformed to the log-log scale. This was
done for each inventoried plot separately.

ln (Hi0) = β0 + β1ln (Di0) + εHi0 (2)

where β0−1 are estimated parameters, and residual er-
rors, εH ∼ N

(
0, σ2

H

)
specific to a single plot. Similarly,

the HCB was estimated using the same model form,

ln (HCBi0) = γ0 + γ1ln (Di0) + εHCBi0 (3)

where γ0−1 are estimated parameters, and εHCB ∼
N
(
0, σ2

HCB

)
. The equation predicting maximum crown

width (MCW ) for open grown Douglas-fir trees was
taken directly from Hann (1999) and applied as a known
relationship without any incorporation of uncertainty.
Similarly, covariates derived from MCW were treated
as known.

Projections were made on an annual time step (t) for
each tree. Dominant average height HD of the invento-
ried plot was projected using [Eq. 1] modified as,

HD =
Age2

t

Aget

(
Aget−1

HDt−1
+ α41

)
+ α40

Aget−1
+

+ α41Aget−1 + α40

+ εHD (4)

where α40−41 are estimated parameters, and εHD ∼
N
(
0, σ2

HD

)
. The Hossfeld function based base-age in-

variant equation (Cieszewski 2003) was selected because
it showed adequate fit to the data and could be alge-
braically solved for Aget . Growth effective age (GEA)
was defined as the expected age of an individual tree
for a given height, had that tree followed the dominant
height trajectory (Eq. 1) for the plot estimated SI. For
each time step, GEAitwas defined as the algebraic solu-
tion for Aget in Eq. 4 based on substituting AgeSI for
Aget−1 , SI for HDt and Hit−1 for HDt−1 . Potential
height growth is then the height increment of an average
dominant tree with height, Hit−1and age set to GEAit−1
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Table 1: Common variable units and definitions used in this analysis.

Variable Units Definition

AGEt yrs breast height age at projection year t
AGEsi yrs Site index base age (25 yrs)
HD m Avg. height of the 100 dominant trees per ha.
SI m Site index; estimated dominant tree height at breast height age 25
MCW m Maximum crown width for open-grown trees for a specified diameter
MCA m2 Maximum crown area computed from MCW and assuming a circle
CCF % Crown competition factor; max potential crown area as a proportion of plot area
D cm Diameter at breast height
H m Total tree height
HCB m Height to lowest live branch whorl
CL m Crown length
CR proportion Crown ratio
TPH # ha−1 Stem density
BA m2 ha−1 Basal area as a sum of D2

DQ cm Quadratic mean diameter
GEA yrs Growth effective age
PHG m Potential height growth
∆D cm Annual diameter increment
∆H m Annual height increment
∆HCB m Annual change in height to crown base
VOLib m3 Total inside bark tree volume

as,

PHGit =
(GEAit−1 + 1)

2

(GEAit−1 + 1)N5 + α40
−Hit−1, (5)

where: N5 = GEAit−1

Hit−1
+ α41GEAit−1 − α40

GEAit−1
+

α2 (GEAit−1 + 1).
Individual tree height growth was then modeled as

a function of potential height growth, modified to ac-
count for stand- and tree-level covariates, similar to Ar-
ney (1985) as,

∆Hit =
(

Hit−1

HDit−1

)ψ60+install∆H+plot∆H

×
(

1− ψ61

(
CCF it−1

600

)ψ62
)

×PHGit + ε∆H

(6)

where ψ60−62 are estimated parameters, install∆H and
plot∆H are random effects assumed distributed Gaussian
with means zero and variances σ2

∆Hinstall
and σ2

∆Hplot
,

respectively, and residual error is weighted by H as,
ε∆H ∼ N

(
0, H2

it−1σ
2
∆H

)
.

Recession in HCB was adapted from Hann and Hanus
(2004) as,

∆HCBit =
CLit−1 + ∆Hit

1 + exp (N7)
+ ε∆HCB (7)

where, N7 = ϕ70 + install∆HCB + plot∆HCB +
ϕ71ln(CRit−1) + ϕ72CRit−1 + ϕ73GEAit−1 +

ϕ74ln(BAit−1) + ϕ75
CRit−1

BAit−1
, and where, ϕ70−75

are estimated parameters, CL is crown length, CR is
crown ratio, install∆HCB and plot∆HCB are random
effects assumed distributed Gaussian with means
zero and variances σ2

∆HCBinstall
and σ2

∆HCBplot
, re-

spectively, and residual error is weighted by CL as,
ε∆HCB ∼ N

(
0, CL2

it−1σ
2
∆HCB

)
.

Diameter growth was adapted from Hann et al. (2006)
as,

∆Di = exp


θ80 + install∆D + plot∆D
+θ86BA

0.5
it−1 + θ85

Dit−1

DQit−1

+θ81Dit−1 + θ82D
2
it−1

+θ83 ln CRit−1+0.2
1.2

+θ84 ln(SI − 1.37)

+ ε∆D (8)

where θ80−86 are estimated parameters, install∆D and
plot∆Dare random effects assumed distributed Gaussian
with means zero and variances σ2

∆Dinstall
and σ2

∆Dplot
,

respectively, and residual error is weighted as ε∆DBH ∼
N
(
0, DBH2

it−1σ
2
∆DBH

)
.

Individual tree survival probability was modeled with
logistic regression,

logit(p.survit) = δ90 + δ91Dit−1 + θ92SI

+θ93

(
1− Dit−1

DQit−1
+ θ94BAt−1

)
(9)

where δ90−94 are estimated parameters. Crown length
and tree height covariates were excluded from the model
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Table 2: Attributes of the individual trees and plots used for constructing the equations.

Attribute Mean SD Min Max

Individual tree measurements (n = 18,660)
DBH (cm) 11.84 7.91 0.25 58.67
HT (m) 9.13 6.09 0.83 39.74
HCB (m) 2.21 3.72 0.00 28.44
CL (m) 6.92 3.36 0.49 20.91
CR (%) 83.93 16.33 4.36 100.00
BAL (m2 ha−1) 6.53 8.21 0.00 49.64
GEA (yrs) 11.75 7.34 2.13 52.67
PHT (m yr−1) 0.89 0.15 0.41 1.19
∆DBH (cm yr−1) 1.18 0.57 0.01 2.49
∆HT (m yr−1) 0.87 0.28 0.01 1.92
∆HCB (m yr−1) 0.44 0.39 0.00 2.44
Volib (m3) 1.68 3.43 0.01 45.57

Individual measurement periods (n = 690)
Measurement period (yrs) 2.93 1.03 2.00 8.00
BA (m2 ha−1) 10.08 12.33 0.01 52.08
TPH (# ha−1) 770.83 437.77 9.95 1832.74
QMD (cm) 10.95 7.85 0.50 37.67
CCF (%) 95.39 87.87 0.18 347.63
HT100 (m) 9.96 7.06 1.46 39.08
AGEBH 8.57 7.36 0.00 42.00
AGETOT 14.93 7.84 6.00 51.00
SI (m at 25 yrs AGEBH) 21.27 2.72 10.94 26.11
∆BA (m2 ha−1 yr−1) 1.45 0.89 0.01 3.73
∆HT100 (m yr−1) 0.93 0.26 0.18 1.91

to increase the number of trees available for fitting the
model, since most trees were not directly measured for
these metrics.

Finally, tree-level attributes like D and H are com-
monly used to predict individual tree volume (Vol) so un-
certainty in either of these estimates could significantly
influence this estimate. Consequently, a volume equa-
tion similar in form to Honer et al. (1965) was derived
using a subset of destructively sampled Douglas-fir trees
(n = 337),

Volib =
D

θ100 + θ101

H

(10)

where Volib is the total volume inside bark and θ100−101

are estimated parameters.

Except for the survival as well as H and HCB at
t0 equations, all other equations were fitted using the
nlme package (Pinheiro and Bates, 2000) in R v3.0.2 (R
Development Core Team, 2012). The increment equa-
tions were annualized from multi-year measurement in-
terval data using an iterative technique described by Cao
(2000) and Weiskittel et al. (2007). All parameters were
estimated using nonlinear mixed effects with installa-
tion and plot within installation as random effects. Since

these data violated the assumption of homogeneous vari-
ance, a power variance function of the primary covariate
was incorporated into the fitting function for the equa-
tions. The power variance function was common to all
installations and plots and was defined in this analysis as
s2 (v) = |v|(2x) , where v is the variance covariate, s2 (v)
is the variance function evaluated at v, and x is the vari-
ance function coefficient. Missing H and HCB data were
fitted directly within the Bayesian model using contem-
porary parameter estimation techniques (Fig. 2). The
fitted parameters were given non-informative priors as
˜N(0,10000), with the residual errors given partially in-
formative priors, σ˜uniform(0,20). Parameter estimates,
standard errors, correlation between parameters, as well
as residual errors were fitted and directly incorporated
into projections in the Bayesian Network.

In contrast to other fitted equations, Bayesian meth-
ods were used to fit probability of survival since the
observation intervals for the survival data varied be-
tween two and eight years, making simple logistic regres-
sion inappropriate (Cao 2000). The Bayesian approach
handled multi-year observations by modeling the period
probability of survival as a product of the individual year
probabilities within each measurement period, with the
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Table 3: Variable states as inventoried, derived or projected for individual tree i or stand level. Variables only used
in projections that are set at current values are shown as time step t-1. Recursive variables are those where the
current value affects projections are shown in italics.

Source (time step) Variable

Inventory (t0) Di, Hi*, HCBi*, Survi Age
Derived (t0) Cli, CRi, HD, SI, BA, TPH, CCF
Projected (t-1) GEA, CCF, BA, TPH
Projected (t) HD, PHG, HMOD, ∆Di, ∆Hi, ∆HCBi, Survival
Derived (t) D, H, HCB, CR, CCF, BA, TPH, HD, DQ

Notes: Constants, parameters and transformed variables are not shown.
∗Often only a subsample is measured.

Figure 2: Missing heights were estimated prior to growth
projections with two randomly chosen MCMC iterations
shown here (circles and triangles). Only a randomly
chosen subset of missing heights on plot 1 are shown
for clarity. The estimated regression functions for both
MCMC iterations are also plotted.

exception that explanatory covariates retained the val-
ues at the start of each measurement period. Priors for
the parameters were δ1−5 ˜N(0,1000). This Bayesian
model fitting was done separately, and then parameter
estimates, standard errors, and correlation between pa-
rameters were inputted as data for the Bayesian Network
to predict annual survival probabilities.

2.4 Bayesian model projections

To illustrate model projections, inventory data from
three Douglas-fir plots were used as starting points
in model projections (Table 4). Each plot was pure
Douglas-fir, with a full inventory of D and subsampled
H and HCB from single 0.202 ha plots. These data were
used in a regional GY cross-model comparison (Johnson
2005), so they represented a range of growing conditions

typical for the region and provided a convenient refer-
ence.

Table 4: Douglas-fir stand characteristics (Breast Height
Age, Dominant Height, Site Index, Basal Area, num-
ber of trees per ha, and Quadratic Mean Diameter) for
three 0.202 ha inventoried plots serving as starting con-
ditions for the 40-year model projections. The inventory
data is from Johnson (2005) and was available online at
www.growthmodel.org.

Variable Units Plot 1 Plot 2 Plot 3

AgeBH yrs 29 25 19
HtDom m 22.1 18.4 20.6
SIa m at 25 yrs 19.2 18.4 27.2
BA m2 ha−1 33.7 31.8 34.8
NT # ha−1 1502 1809 949
QD cm 16.9 15 21.6
a Eq. 1 estimated.

In a Bayesian Network, parameters are considered
random variables and therefore the full distribution
of the parameters are provided, including their means
and variances. The component equations fitted to the
available Douglas-fir dataset were described by parame-
ters, correlations between parameters, and finally errors,
which included the standard errors for parameters, ran-
dom effects, and random residual errors. All of these
statistics were inputted to the model as initial condi-
tions and/or more formally as prior distributions. For
each MCMC iteration, component equation parameters
were drawn from a multivariate normal (MVN) distribu-
tion specified by the parameter means, standard errors,
and correlation between parameters. Similarly, random
effects were drawn for each MCMC iteration for each
component equation as a distributed Gaussian normal
with mean zero and the estimated variance component.
Parameters and random effects were randomly drawn at
the start of each MCMC iteration and then kept con-
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stant for each projection year and tree within that sin-
gle iteration. Residual errors, however, were randomly
generated for each tree and projection year within a sin-
gle MCMC iteration. Residual errors were randomly
generated based on the estimated residual errors, but
then applied (i.e., added) on the unweighted scale. In-
dividual tree survival in a projection year was randomly
determined based on the computed mean probability of
survival. A few restrictions were added to the model
structure such as not allowing D, H, or HCB to decrease
with increasing age, although HD was not similarly con-
strained. Survival was tracked for individual trees to
ensure consistency. Finally, plot average or summation
variables such as DQ or TPH were expanded to a per-ha
basis and computed within each iteration, and therefore
also expressed as posterior densities.

All projections were made with JAGS v3.3.0 (Plum-
mer 2003). Each projection started with the inventory
list from the three plots. Initial H and HCB were mea-
sured on approximately 15% of the plot trees, so these
variables were estimated for trees with missing data us-
ing equations 2 and 3 embedded within the Bayesian
Network. The base projection of 40 years included all
sources of error and uncertainty, including a stochasti-
cally applied survival function. A fixed random num-
ber “seed” was used for repeatability of results. An
initial 25,000 MCMC iterations were used as a “burn-
in” period, and discarded. Projections were comprised
of 40,000 additional MCMC iterations, retaining every
10th iteration to reduce serial correlation. These 4,000
MCMC iterations formed the posterior distributions of
the projected variables. Note that this burn-in period
and serial correlation concerns were only necessary due
to missing H and HCB data being estimated directly
within the projection model. Additionally, we randomly
chose 25% of these MCMC iterations to illustrate model
behavior.

2.5 Error budgets

One of the principal advantages of a Bayesian Net-
work is the automatic propagation of errors throughout
the model. This is achieved since each variable is con-
nected through the conditional relationships depicted by
the Bayesian Network. We examined the error budgets
of the Douglas-fir GY model by investigating how un-
certainty in the component equations (i.e., residual vari-
ance, parameter error, random effects, or state uncer-
tainty) influenced system-wide error. Forty-year projec-
tions were made for each of the three plots that included
all errors (i.e., base projection), where all errors were set
to null values (i.e., a deterministic model with all errors
set to zero), and finally, where individual error terms
were set to null values. In sum, 18 different 40-year
projections were run for each plot. Mortality in all of

the projections, including the deterministic model, was
stochastically applied using the same approach as the
base projection and used as a basis of comparison.

3 Results

In this section, we focus on assessing the adequacy
of the modeling platform with emphasis on error prop-
agation and model projections. This is done to illus-
trate the dynamics and flexibility of the Bayesian mod-
eling platform, which is then further expanded on in the
Discussion to other useful aspects relevant to ecological
modeling.

3.1 Bayesian Networks as a modeling platform

We found the Bayesian modeling platform to be ad-
equately flexible for handling a relatively small, but
rather complex ecological model. The model specifi-
cation in the Bayesian Network is generally straight-
forward (Supplemental Materials S1), with component
equations depicted by easily understandable scripts in
the programs WinBUGS or JAGS. One of our primary
goals was to develop a modeling platform that would eas-
ily incorporate error budgets. As such, the models used
contain several distinct errors types, and each was propa-
gated automatically through the Bayesian Network. The
models were then compiled and simulated forward 40
years in JAGS for between 60-90 min, depending on the
number of simulated trees (192 to 366). Simulations
took considerably longer in WinBUGS (the compiling
step only) or failed entirely for large datasets, a recog-
nized glitch in WinBUGS with highly recursive models.
Results from several smaller models (fewer trees and/or
projection yrs) were compared between WinBUGS and
JAGS, and were for all purposes, indistinguishable. All
model projections were therefore made with JAGS run-
ning on a high performance computer cluster at Okla-
homa State University. Single JAGS runs, however, were
easily done on a desktop computer with adequate mem-
ory.

In general, the individual equations fit well and are
consistent with expectations (Supplemental Materials
S2). Plot-level projected variables are comparable to
six other regional growth and yield models widely used
for coastal Douglas-fir, including ORGANON (Hann
et al. 1993), FVS (Crookston and Dixon 2005), DF-
SIM (Curtis et al. 1981), FPS (Arney 2005), DF.GOAB
(Weiskittel et al. 2007), SPS (Arney 1985), and TASS
(Mitchell 1975). Each model used the same three ini-
tial plots for projections (Table 4), and we compared
our run against non-thinned and non-fertilized growth
projections after 20 years to match their results. Our
base-projection dominant heights were 7.8%, on average,
higher than six other common Douglas-fir GY models
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used in the region, which is likely due to the plantation-
specific (versus regional) dominant height growth equa-
tion used in our study. Our base-projection stand BA
was 1.9 and 3.7% higher relative to the six model aver-
age for plots 1 and 2, respectively, while it was 17.7%
lower for plot 3. The source of this difference for plot
3 is unclear; however, two of the growth models, in-
cluding ORGANON (Hann et al. 2003), showed similar
projections for plot 3 (within 3.5%). With respect to
the predicted 20-year periodic annual increment (PAI),
which includes uncertainty from both D and H, the re-
vised DF.GOAB generally had the highest value (except
for plot 3), but it was generally near the median estimate
from the other models (Table 5).

Table 5: Derived periodic annual increment (m3 ha−1

yr−1) of various growth and yield (GY) models in the
Pacific Northwest for three plots after 20 years of pre-
diction. The GY models included DFSIM (Curtis et
al. 1981), FPS (Arney 2005), FVS (Crookston and
Dixon 2005), DF.GOAB (Weiskittel et al. 2007), SMC-
ORGANON (Hann et al. 2003, 2006), SPS (Arney
1985), and TASS (Mitchell 1975) as well as the revised
DF.GOAB developed in this analysis, which is presented
with a 95% credible interval. For comparison, the over-
all median with a 95% confidence interval (CI) was com-
puted.

Predicted PAI (m3 ha−1 yr−1)
GY Model Plot 1 Plot 2 Plot 3

DFSIM 18.9 19.3 35.6
FPS 15.3 17.8 33.8
FVS 15.8 13.4 17.2
DF.GOAB 16.8 18.8 19.9
DF.GOAB 22.6 24.3 28.7

Revised 22.6 24.3 28.7
(This Study) 20.6, 24.6 22.0, 26.5 24.7, 32.8
ORGANON 17.8 16.2 23.9
SPS 17.9 21.6 30.5
TASS 17.0 20.8 30.4
Median with 17.4 18.5 29.5
95% CI 14.8, 24.8 15.4, 27.6 24.6, 43.6

3.2 Error representation

All sources of uncertainty in the system of equations
are represented in the Bayesian probabilistic modeling
platform. Parameter errors are represented as MVN
for each fitted equation, but are considered independent
across equations. The database for equation fitting is ex-
tensive, so standard errors on parameter estimates are
relatively small. However, residual errors and random

effect are relatively large for reference to model perfor-
mance (Supplemental Materials S3).

Each iteration of the MCMC represents a full 40-year
simulation for all projected trees, and the model took a
random MVN draw as the parameter estimates for each
iteration. Parameter estimates fully retain the pair-wise
linear correlations between parameters, and assign these
unique parameter draws to project all individual trees
across all years for that single MCMC iteration. Dif-
ferent MCMC iterations use various parameter draws
from the same MVN distribution. Similarly, random er-
ror is partitioned during equation fitting into installation
and plot variance components, along with residual error.
Each component is considered independent within and
between equations (Littell et al. 2006). The Bayesian
Network is flexible enough to model this hierarchical er-
ror structure, which is necessary given the typical ob-
jective of projecting specific field inventoried plots as
discrete units rather than as random draws from a pop-
ulation. This also allows for the potential to calibrate
individual plot- and installation-level random effects.
However, without calibration data the installation- and
plot-level random effects would be applied as full un-
conditional error terms, additive to residual variance.
We assessed installation- and plot-level random effects
for across equation correlations, but found these to be
mainly non-significant, with the largest correlation co-
efficient (-0.51) between plot∆H and plot∆D . Residual
errors also had low correlations.

The model is also able to incorporate uncertainty in
starting conditions and propagate this error throughout
the system of equations. These types of GY models pri-
marily use difference form equations, predicting change
from a starting condition, rather than states. In our GY
model, starting conditions for each tree included D, H,
and HCB, where only D was recorded in the field for each
tree, with sub-samples for H and HCB. Missing values
for H and HCB are then predicted using plot specific
regressions. Individual-tree H and HCB estimates are
relatively imprecise, and so were entered into the data
as actual estimates within the Bayesian model rather
than assuming the fitted means from the regression line
(Fig. 2). Using a plot-specific equation and data to es-
timate H and HCB [eqs. 2-3], the Bayesian platform
fitted the parameter estimates through a contemporary
MCMC approach with non-informative priors (Gelman
2003). We ran a sufficiently long (25,000 burn-in iter-
ations) MCMC and checked to ensure convergence to
a stable posterior distribution and good mixing of the
chain. Further MCMC iterations in the projections were
assumed to adequately represent the posterior distribu-
tions for the H and HCB parameters. If a regional H and
HCB equation were used (e.g., Robinson and Wykoff
2004), the Bayesian platform is flexible enough to simul-
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taneously update priors for the plot random effect (i.e.,
calibration) using the H and HCB data for the specific
plot. It should also be noted that log-bias corrections
(Flewelling and Pienaar 1981) are not necessary in a
Bayesian Network since the back-transformations to the
nominal scale are made at the individual tree-level pre-
dictions (Stow et al. 2006).

We modeled individual-tree mortality with logistic re-
gression. For each projection year the model predicted
mortality (yes/no) based on the estimated probability
of mortality from the fitted model. Randomly drawn
parameter estimates were constant across all projection
years within a single MCMC iteration. Predicted mor-
tality for each tree in a projection year was taken as a
random draw from a Bernoulli distribution with the pa-
rameter equal to the projected probability of mortality.
Within a single MCMC iteration (i.e., over all yrs), we
constrained tree status (live v. dead) to remain dead in
future years if a mortality event had occurred. Mortality
was the only discrete variable in the model.

Site index is the only required measure of site quality
for the ecological system. Predictions of site index for
our illustration plots were relatively imprecise, despite
the actual age of the plantations being close to the site
index base age of 25 years (Fig. 3). Precision will de-
crease for stand ages further from this base, particularly
for younger stands. The site index for plot 2 was known
exactly (18.4 m at 25 yrs) because the stand was 25 years
old. As with all other estimated variables and param-
eters, site index is represented in our model as a pos-
terior distribution of possible values. This is distinctly
different from other forest GY models that apply a point
estimate of site index as a known value. Lastly, for two
derived variables (MCW and MCA) we took parameter
estimates from the literature, but since these were given
without standard errors or correlation between parame-
ters, these parameters were entered into the model deter-
ministically. All derived variables in this model, except
some in the starting year, are represented as posterior
distributions since they were computed from variables
with modeled uncertainty. Certain starting year derived
variables, such as BA0 , are based on fully measured
data (and thus assumed to be known with certainty and
without any measurement error), which can be an im-
portant source of uncertainty in forests (e.g., Gertner
1990).

3.3 Error propagation

Error propagation occurred automatically across com-
ponent equations and projection years for all sources and
types of errors, including parameter estimation error,
residual error, and random effects, as well as uncertainty
in stand- and tree-level starting conditions. Plot-level

Figure 3: Derived posterior distributions of site index for
plots 1 and 3. Site index for plot 2 was known precisely
since it was 25 years old.

projections showed error propagation across years, with
the uncertainty increasing over time (Fig. 4). For illus-
tration, stand-level variable projections for Plots 1 and
3 are shown for 25 randomly selected MCMC iterations,
plotted relative to the mean and 95% credible interval
(Fig. 4). For consistency, the same MCMC iterations
were used across all variables. Plot 2 behaved similarly
to Plot 1, and is not shown. HD projections [Eq. 4]
showed wider credible intervals (Fig. 4), despite precise
parameter estimates (Supplemental Materials S3). The
primary influence was a relatively large residual error
that was additively applied to this non-linear equation in
successive projection years. This uncertainty in HD pro-
jection resulted in the somewhat wider credible intervals
for site index (Fig. 3). Projections for stand-level vari-
ables, BA, DQ, and TPH, were somewhat less variable.
The 95% credible intervals for BA were approximately
symmetric, but increased over the projection period to
between 14% and 23% of the mean at 40 years for these
plots (Fig. 3). DQ showed similar projection errors av-
eraging 18.1% of the mean, while TPH was somewhat
less precise, ranging between 24% and 31% of the mean
projection.

Individual tree-level projection errors were greater
than stand-level errors (Fig. 4). Individual tree projec-
tions for D, H, and HCB are influenced by random effects
and residual errors, as well as parameter errors. In addi-
tion, most trees had an estimated initial H and HCB val-
ues, which contributed to projection error. The stand-
level projections are a summation or average of the in-
dividual trees, so much of the individual tree projection
uncertainty is offset by other trees at the stand-level.
The tree-level projections are assumed to be condition-
ally independent in the model, and the relatively large
plots (0.202 ha) with a large number of measured trees
(192 to 366) allow for considerable averaging. Tree-level
projections were not strictly independent, since plot-
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Figure 4: Base 40-yr projections for Plots 1 and 3 of pure Douglas-fir plantations with initial ages of 29 and 19 yrs,
respectively. Plot 2 behaved similarly to Plot 1, so was not shown for clarity. Shown are posterior means (solid heavy
line), and 95% credible intervals (dashed lines) for plot-level characteristics. Base projections included all sources
of error. Also shown are 25 randomly chosen MCMC iterations from the 4,000 iterations comprising the sampled
posterior distributions, keeping the same iterations for all variables.

level variables (e.g., BA and CCF) influence these tree-
level projections. However, within a single projection
step (i.e., age), the trees were considered independent.
Also, Figure 4 illustrates the variability in the mortality
projections. As expected from ecological understand-
ing, mortality tends to be higher in smaller diameter
trees (Fig. 5), but there is also stochastic variability be-
tween MCMC iterations. It should also be noted that
errors due to parameter and random effects do not av-
erage across trees, since these are applied to all trees
identically in an MCMC iteration.

3.4 Error budgets

Increasingly wider credible intervals with projection
age was simply inherent to the recursive nature of these
equations, where prediction error in one year (either
tree-level or plot-level variables) were propagated for-
ward to the next year, and so on (Fig. 4). Residual er-

ror was considered independent across trees and years,
which is an error structure that serves to reduce across-
year effects through partial cancellation depending on
the random draw. We did not employ an error structure
that was constrained across the entire simulation period,
or gradually changing (e.g., autoregressive). Thus, the
contribution of residual errors to the system-wide pre-
diction error was generally higher than when accounting
for other sources of error (Table 6).

A full error budget for this forest GY model is be-
yond the scope of this paper, since our primary objective
was to develop the modeling framework and evaluate the
several advantages it can provide. Projection errors for
selected plot-level variables are shown in Table 6 for the
full base-projection for Plot 1 only, at the 40th projection
year (i.e., all errors included), and individually reduced
models, removing one source of error for a single com-
ponent equation at a time. System-level error is clearly
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Figure 5: Diameter growth projections for arbitrarily chosen trees 1 and 2 from Plot 1 for the base projection (left)
and projection where residual error for diameter growth was set to zero (right). Shown are posterior means (solid
heavy line), and 95% credible intervals (dashed lines). Also shown are 25 randomly chosen MCMC iterations from
the 4,000 iterations comprising the sampled posterior distributions. Mortality events are shown as an ending line
prior to the end of the projection. The credible intervals reflect no diameter growth after a mortality event, so are
wider than a dynamic approach that only tracks live trees.

not a simple additive process across all error components
(Table 6). HD residual error showed the greatest effect,
reducing RMSE from 5.6 to 0.52 m. All HD projections
were relatively similar to the deterministic projection, as
shown by very small percentage differences. Similarly,
H0 and HCB0 estimates were similar to deterministic
estimates, with the RMSE contributing the most to the
variability (Table 6), rather than parameter error. How-
ever, all of these equations were non-recursive, and were
not dynamic across component equations.

Projections of BA and TPH with and without includ-
ing residual errors on ∆D illustrate the marked differ-
ences between approaches (Fig. 6). The only difference
between the two projections is that residual error was
set to 0.00001 (i.e., essentially zero). Doing so paradox-
ically increased projection error, but also strongly re-
duced the projection difference relative to deterministic
projections (Table 6). All three plots behaved similarly,
and a simple examination of the component equations
explains this model behavior.

The individual tree-level ∆D equation shows a highly
recursive and dynamic projection function. In simplified
terms, diameter growth in each time-step is a function
of the starting diameter, other tree-level variables also
influenced by D (H and HCB), as well as plot-level de-
rived variables involving D, H, and HCB. However, the
dominant influence causing the differences shown in Fig-
ure 5 is due to a strong interaction between an annual-
time step residual error on ∆D and the highly recursive
and dynamic form of the ∆D equation. As trees in-

crease in diameter, they tend to grow faster, provided
all other variables remain unchanged. This is generally
accepted in these types of ecological systems, and is re-
flected in our parameter estimates (Supplemental Mate-
rials S3). Thus, by adding residual errors to individual
tree growth, if a tree had a positive error (higher ∆D in
a year than the expected mean) this larger D would re-
sult in a positive feedback, with higher expected ∆D in
the subsequent year. Because ∆D is a highly non-linear
equation, errors across years do not, on average, sum
to zero for individual trees; that is, they do not “cancel
out.” Neither do these errors cancel out for derived vari-
ables such as BA. However, the dynamic nature of the
projection system restricted “run-away” D projections
since this variable is strongly and negatively related to
stand-level BA. Similarly, run-away D and BA were pre-
vented due to a strong interaction with mortality, where
the probability of mortality strongly increased with in-
creasing stand BA. There was a strong increase in pro-
jected mortality for the projections, including residual
error on ∆D (Fig. 5), which resulted in lower projec-
tion error. Regarding these comparisons to deterministic
projections, it is not clear which projection scenario (i.e.,
including residual error on ∆D or not) is closer to the
actual tree D and BA dynamics. This topic is expanded
on in the Discussion (section 4.2). The other stand-level
variables (DQ and TPH) behaved similarly, since each
one’s component equations were similarly non-linear and
recursive. The deterministic projection was more simi-
lar to the scenario without residual error on ∆D for the
reasons stated.
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Table 6: Effects of individually removed sources of error for a single component equation, with the component
equation and source listed. Results are 40-yr projections for Plot 1 only showing residual error (RMSE), and
percentage difference (Diff%) compared to a purely deterministic projection.

Component
Source of error

HD (m) BA (m2 ha−1) DQ (cm) TPH (# ha−1)
(Eq #) RMSEa Diff%b RMSE % RMSE Diff% RMSE Diff%

All none 5.6 -0.21 2.82 21.17 1.64 18.45 41.18 -18.2
HD (4) parameters 5.58 -0.23 2.83 21.15 1.65 18.47 41.36 -18.2
HD (4) residual error 0.52 0.03 2.67 21.16 1.38 18.42 28.65 -18.3
H (2) parameters 5.54 -0.06 2.8 21.21 1.59 18.46 40.5 -18.1
H (2) residual error 5.65 -0.19 2.76 21.16 1.58 18.44 40.29 -18.2
HCB (3) parameters 5.77 0.03 2.8 21.13 1.62 18.48 41.01 -18.3
HCB (3) residual error 5.63 0.2 2.88 21.22 1.64 18.46 41.23 -18.1
HMOD (6) parameter 5.6 -0.21 2.83 21.15 1.64 18.46 41.08 -18.2
HMOD (6) random effects 5.65 -0.21 2.81 21.28 1.62 18.58 41.1 -18.4
∆H (6) residual error 5.62 -0.05 2.53 19.07 1.48 16.39 41.02 -15.4
∆HCB (7) parameter 5.64 -0.08 2.8 21.28 1.65 18.53 40.92 -18.2
∆HCB (7) random effects 5.65 -0.21 2.53 21.4 1.43 18.73 39.09 -18.6
∆HCB (7) residual error 5.6 -0.21 4.09 24.77 2.4 22.2 45.31 -23.7
∆D (8) random effects 5.65 -0.21 2.24 21.1 1.21 18.35 37.35 -18.1
∆D (8) parameters 5.65 -0.21 2.81 21.28 1.62 18.59 41.35 -18.4
∆D (8) residual error 5.62 -0.05 3.96 -3.71 2.41 -2.79 68.08 2.6
SURV (9) parameters 5.65 -0.21 2.71 21.29 1.61 18.57 39.66 -18.3
aRMSE is the standard deviation of the posterior distribution for the 40th projection year.
bDifference relative to a deterministic projection, computed as 100 * (projection mean - deterministic mean) / projection mean,
where the two variables are the means of the posterior distributions. Only one deterministic projection was required.

Random effects and parameter errors did not cause
similar differences between our projections and the de-
terministic one. These types of errors entered into pro-
jections in a fundamentally different way, since they were
chosen stochastically once and only once at the begin-
ning of each MCMC iterations, and so were fixed across
all projection years, whereas residual error was stochas-
tically drawn in each projection step (i.e., each projec-
tion year).

4 Discussion

This example from a common class of ecological mod-
els, namely a recursive system of discrete, difference form
equations, was easily and adequately represented within
a Bayesian Network. The MCMC approach allowed for
mixed discrete and continuous variables, and was suffi-
ciently flexible to model a rather complex error struc-
ture of our example ecological system. We specifically
chose to investigate a Bayesian Network as a modeling
platform. The main criteria for this platform were: (1)
accurate and tractable projections that include full error
propagation, (2) flexible and comprehensive analytic ca-
pabilities, (3) allows hierarchical and multi-level model
structures, (4) capability for random effects calibration,
(5) capability for hypothesis testing and updating knowl-

edge across different system components, simultaneously
with different sources of information (i.e., new data), (6)
computationally fast, and (7) relatively simple imple-
mentation, preferably in a scripting language. Finally,
while not one of the formal criteria, the probability inter-
pretation of the posterior distributions provides a clear
advantage for use within decision support systems (Bor-
suk et al. 2004) and is the basis for the natural link be-
tween Bayesian approaches and risk assessment (Berger
1985).

There are several off-the-shelf programs that imple-
ment MCMC in a Bayesian context, including Win-
BUGS and JAGS. Commercial packages for imple-
menting Bayesian Networks were not evaluated, but
have been used successfully elsewhere (e.g., Borsuk et
al. 2004). Most of these commercial packages are lim-
ited to either categorical or Gaussian distributions, and
are limited in their capacity to simultaneously update
parameters with new data. Our choice of open-source
or freely available software was guided by the need for
both a Bayesian network platform and the desire for
simultaneous Bayesian parameter updating used in cal-
ibration and parameter estimation, as was done in this
study. We also required a Linux version for access to
high performance computing facilities, which we would
expect to be a common requirement for research use.
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Figure 6: Forty year projections for Plot 1, a pure
Douglas-fir plantation, where residual error for diame-
ter growth was set to zero. Shown are posterior means
(solid heavy line), and 95% credible intervals (dashed
lines), as well as 25 randomly chosen MCMC iterations.
For reference, 95% credible intervals for the base pro-
jection (all sources of error included) are shown as gray
outline, which are identical to results from Fig. 4.

The JAGS program was one possible choice, and was
shown to be thoroughly adequate. Alternately, for port-
ing existing ecological models to a Bayesian Network, be-
spoke code could be written for MCMC samplers (Hojs-
gaard et al. 2012), and this approach might be preferable
for deployment of models past the development stage as
it simplifies the amount of recoding of the original model.

The primary difficulty with representing a relatively
simple Douglas-fir forest GY model as a Bayesian Net-
work arose from the highly recursive nature of the equa-
tions. The graph moralizing step in constructing the
model dependencies is not unduly numerically intensive
(Nielsen and Jensen 2009), but tended to cause certain
Bayesian software programs to have very long “compile”
times, WinBUGS and OpenBUGS in particular. Once
the model was compiled in JAGS, running 40,000 iter-

ations of the MCMC took 60 to 90 minutes, depending
on the number of trees simulated. This compiling is-
sue with highly recursive equations is a known problem
with these software packages, but was not exhibited for
JAGS. Finally, due to the highly connected nature of
Bayesian Networks, the models contained an extremely
large number of variables (>100,000), with each variable
being represented as a posterior distribution of possible
values. These included all parameters, random effects,
and residual errors, but also each predicted variable for
each projection year was considered a unique variable.
These included all predicted H0 and HCB0, as well as
separate D, H, HCB and survival projections for each
tree over each of the forty years in the projection. De-
rived variables at the tree- or plot-level such as CCF and
BA had similar representation, each being expressed as
posterior distributions for each time step. This highly
connected nature of Bayesian Networks adds to their
flexibility, but also to their computational load.

4.1 Error budgets

Plot 1 BA was projected to be 72.8±2.82 m2 ha−1

(mean ±sd) after 40 years, with 95% CI of 67.3 to 78.5
(Fig. 4). Similar statistically valid errors are available
for every projected variable on each plot. Automatic er-
ror propagation across the system of equations is a dis-
tinct advantage of the Bayesian modeling platform. Few
existing ecological models include error estimates with
the projections (Larocque et al. 2008), but there are no-
table exceptions (e.g., Borsuk et al. 2004, Kershaw et
al. 2017). We feel this is a major shortcoming in ecolog-
ical modeling, since the usual manner in which model
projections are assessed is through estimates of projec-
tion error. Without these, it is quite difficult to evalu-
ate the adequacy of point estimates, or make between-
model comparisons. Several methods have been devel-
oped to provide error estimates, and these can be clas-
sified into Monte Carlo–type simulations or analytical
solutions (Lo 2005). Bayesian Networks provide an an-
alytical solution (i.e., a full posterior distribution) that
is represented through MCMC sampling. Accurate and
tractable error estimates are increasingly required for
ecological projections, particularly for carbon seques-
tration where carbon credits are often tied to an esti-
mated lower confidence bound as a conservative measure
(Smith and Heath 2001).

Error characterization in ecological models is most
often done as a sensitivity analysis, where individual
parameters are varied (typically extreme values) and
the model re-run sequentially to provide information
on which parameters most strongly influence predictions
(e.g. Simons-Legaard et al. 2015). In contrast, simple
Monte Carlo methods to fully develop error estimates
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for a system of equations generally require tens, if not
hundreds of thousands of simulations (O’Neill and Gard-
ner 1979). Further, characterizing autocorrelation be-
tween parameters and other non-independent variables
will necessarily add complexity in specifying the simu-
lation space. There are, however, several methods that
have been developed to reduce the number of Monte
Carlo simulations, notably orthogonal polynomials (e.g.,
Gertner et al. 1996, Parysow et al. 2000). Results and
efficiency of these methods would be comparable to the
Bayesian Network approach used in this study, but with
their utility restricted to estimating error budgets.

In its simplest form, a Bayesian Network approach to
characterize error propagation can be viewed as simply
Monte Carlo simulations of a well-conditioned system
of equations. That is, if there is no parameter estima-
tion through new data (e.g., calibration in this context)
or other sources of information, then the dependencies
of the posterior distributions are explicitly defined as
Π(parents). Markov Chain Monte Carlo sequentially
samples each variable conditional on the current esti-
mate of the other variables, and the dependencies spec-
ified in the component equations. The posterior distri-
butions (e.g., Fig. 4) are a collection of equally plausible
predictions and form statistically valid error estimates.
The primary contrast between Bayesian Network and
simple Monte Carlo approaches is in the use of stochas-
tic draws. The Monte Carlo approach explicitly make a
random draw from a known (or presumed known) distri-
bution. In cases where parameters are non-independent
(e.g., MVN) then random draws for these parameters
are conditioned on their covariances. In contrast, ran-
dom numbers in MCMC are used to compute a pro-
posed step within a random walk (Cappé and Robert
2000). Assuming the current MCMC iteration is sam-
pling from the true posterior distribution for the model,
then each subsequent iteration (step) of the MCMC can
be used to characterize the posterior distributions. In
the simplest Bayesian Network case (i.e., no new infor-
mation is provided), when starting value for the chain
are chosen with the same error distributions and condi-
tional dependencies as in the specified model, then even
the first iteration is describing the stationary posterior
distribution (Pearl 2000).

A disadvantage to a Bayesian Network approach for
error budgets is the inability to provide optimal solu-
tions for reducing system error based on a loss func-
tion (Lo 2005). This requires an analytical solution for
error propagation that Gaussian error propagation (Lo
2005) can provide. There are several other analytic ap-
proaches to error budgets, including orthogonal polyno-
mials (Parysow et al. 2000) and first-order Taylor se-
ries approximations of variance (Mowrer 1991). In ad-
dition, Bayesian synthesis (Raftery et al. 1995, Green et

al. 2000) is well suited to error characterization in sim-
ilarly structured ecological models. Such an approach
is ideally suited to characterizing uncertainty where the
model parameters are not estimated from data, which
is common in mechanistic models (Green et al. 1999).
Bayesian synthesis can be used where the mechanistic
model structure and parameters are combined with field-
collected data from higher-level projections; e.g., BA
and TPH at the starting age in our model. The joint
pre-model distribution of all input (model parameters)
and output (usually field data) are updated using con-
temporary Bayesian methods and algorithms to provide
a post-model distribution. However, this approach was
not applied in this study due to abundant process-level
data being available for fitting the component equations.

4.2 Model development and error structure
specification

It became quickly evident during model development
that incorporating residual errors had a marked influ-
ence on projections (Fig. 5). This occurred across all
equations that had a recursive component (e.g., ∆D),
and it carried forward to derived variables. Using a for-
est plantation system, Kangas (1997) showed a similarly
increasing pattern of projection error over time from a
simple Monte Carlo error propagation approach over 50-
year projections. Kangas (1997) also indicated a dif-
ference between Monte Carlo means and deterministic
projections, although not as large as in our study. Pre-
vious studies have also demonstrated differences com-
pared to deterministic projections (Dennis et al. 1985;
Gertner 1991). In particular, both Mowere (1991) and
Kangas (1996) showed clear differences in projections
from a structurally similar forest GY model to ours,
when residual errors were included. However, while their
component equations for ∆D were also recursive, they
attributed the resulting difference to non-linear compo-
nent equations rather than inherent recursiveness. We
submit that the difference is due to both non-linear and
recursive equation forms.

As mentioned previously, it was not clear which pro-
jection of BA (if either) was closer to actual growth dy-
namics (Fig. 6). None of the earlier studies demonstrat-
ing this effect attributed this to a recursive equation, but
instead to strictly non-linear equation forms. However,
tree growth, as with most, if not all, perennial plants, as
well as many animal and other organisms are inherently
recursive, even in a competitive, resource scarce envi-
ronment (Harper 1977, Kremer 1983). This was the ba-
sis for the Chapman-Richards growth function (Pienaar
and Turnbull 1973), as well as simplified Lotka-Volterra
dynamics. Overall, we consider the system of equations
used in our model to fairly well represent growth dy-
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namics. There are both positive and negative feedback
elements with each of the recursive equations, which
act to constrain individual tree- and plot-level growth
rates. Other sources causing differences in our model
include non-recursive equation components such as an
estimated site index. The site index predictions, how-
ever, were similar compared to the deterministic predic-
tions despite having a strongly non-linear form. This
was due to state variables being used in site index com-
putations (i.e., top-height and age were field measured
without likely significant measurement error). However,
site index was still estimated with relatively high error
(Fig. 2) and this variable enters into growth increment
equations non-linearly, which can therefore result in dif-
ferent mean projections from deterministic ones (Table
6). Although these impacts were considerably smaller
than the impacts of including residual errors to other
component equations, they remain a potentially signifi-
cant source of uncertainty.

In this study, we simply noted the marked difference
between probabilistic and deterministic growth projec-
tions, as have other studies. This is clearly a topic that
needs to be resolved, as Bayesian model projections are
becoming more common (Clark and Gelfand 2006). The
relatively sparse modeling dataset makes it difficult to
determine which projection approach is most accurate.
We have numerous tree measurements across 167 plots;
however, the mean total measurement period for a plot
was 12.8 years, with a sd of 4.4. With such short time-
series, prediction error is difficult to assess for recur-
sive equations. There is considerable additional effort
required to fully and accurately characterize the error
structures, even for a relatively simple ecological model
as this. Nevertheless, we do not view this as a disad-
vantage as prediction accuracy does depend on correct
model specification, including correct error specification.
In addition, model building with a specific aim to reduce
projection error will help refine data collection efforts.

4.3 Research integration

The ability of Bayesian Networks to learn and com-
municate information by representing the model systems
conditional probabilities (Pearl 1988) is, in our opin-
ion, the greatest advantage of the probabilistic model-
ing framework described in this study. It is also the
principal feature that distinguishes Bayesian Networks
over alternate modeling platforms. Many of the other
attributes, such as error propagation, have clear corol-
laries with other analytic techniques; Bayesian Networks
provide this collection of advantages in a single platform,
with existing MCMC programs greatly simplifying im-
plementation. In addition, Bayesian Networks also al-
low for very natural and easily understood integration

among discipline-specific models. There has always been
a need to integrate research across disciplines, but most
modeling efforts remain discipline specific. The need for
integrating research across once disparate disciplines is
becoming critical as ecological risks associated with cli-
mate change become more apparent (Willows and Con-
nell 2003).

A direct application of this approach is potentially
where site index estimates are unavailable for an estab-
lished stand; for example, due to past disease or physical
damage to dominant trees so that the dominant trees
were not “free to grow” over the entire stand develop-
ment, and do not represent site potential. In these cases,
the GY models are often applied regardless, but using
an approximate estimate of site index or a regional av-
erage. However, in the probabilistic model developed in
this study, it is entirely possible to substitute field col-
lected ∆D or ∆H information to directly estimate the
site index, such that information or “message-passing”
occurs opposite of the direction of influence (Pearl 1988).
For example, a weakly informative uniform distribution
for site index could be used as a prior distribution that is
then updated with new response data in a conventional
Bayesian approach. Multiple types of data can then be
used simultaneously to predict site index.

This information passing and learning feature of
Bayesian Networks as well as the ability to incorpo-
rate new data into model projections forms much of
the basis for “model-data fusion” approaches in eco-
logical modeling (Fox et al. 2009, Hobbs and Ogle
2011), where model parameters and to some extent
model structure are in constant flux as new data be-
come available. Model-data fusion approaches are fun-
damentally similar to the probabilistic modeling ap-
proach taken in our study, although we emphasized
model projections and error budgets. The Bayesian Net-
work as constructed could immediately be applied to
investigate typical model-data fusion questions (Hobbs
and Ogle 2011). Data assimilation is another related ap-
proach usually implemented around a Kalman filter ap-
proach (Houtekamer and Mitchell 1998). The somewhat
seamless interplay between contemporary Bayesian pa-
rameter estimation and model projection should be em-
phasized; both were done simultaneously in this study.
The flexible Bayesian parameter estimation approach
(Berger 2000, Wikle 2003, Clark and Gelfand 2006) car-
ries forward into a similarly flexible modeling platform
for projections within a Bayesian Network. Our exam-
ple of a relatively complex system of equations was only
one class of ecological model that this framework can
express.

Importantly, the information passing and learning fea-
ture of Bayesian Networks could be applied across very
different disciplines, such as combining economics and
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political science with ecological or hydrology models.
The conditional probability representation of the eco-
logical or social processes provides a common language
across research domains, while the casual representation
allows formal hypothesis testing (in a scientific sense)
across research domains. Formal hypothesis testing
across research domains is further aided by the prob-
abilistic interpretation of the posterior distributions. A
flexible probabilistic platform is critical here. Several
good examples exist of Bayesian Networks in ecologi-
cal modeling; however, most of these are constrained to
categorical-only variables (e.g., ARIES model of ecosys-
tem services; Villa et al. 2009) or have limited ability to
include new data for learning or hypothesis testing (e.g.,
Marcot et al. 2006). The simplest case of cross-domain
hypothesis testing, or learning, comes when projected
outcomes of one model are independent variables (i.e.,
with no parents) in a different model. For more com-
plex cross-discipline integration, parameter identifiabil-
ity will be challenging, and will need to be addressed
through multiple data sources to isolate the processes of
interest.

5 Summary

There are many sources of uncertainty present (e.g.,
systematic error, measurement error, parameter un-
certainty) in ecological models (Uusitalo et al. 2015).
Bayesian Networks are becoming an important approach
for quantifying and understanding this uncertainty (e.g.,
Uusitalo 2007, Barton et al. 2012). To our knowledge,
this is the first development and use of a Bayesian
Network to quantify uncertainty in a commonly used
individual-tree forest GY modeling framework. The
overall projections were consistent with several other re-
gional GY models in the Pacific Northwest (e.g., John-
son 2005); however, the projections showed a relatively
high degree of uncertainty in both estimates of stand-
and tree-level attributes even though the framework only
addressed uncertainty in the underlying prediction equa-
tions and not other additional factors like measurement
error. This uncertainty significantly increased with the
length of the projection, which is an important finding
as most GY projections for both scientific and practical
planning purposes are often 50 to 100 years in length.
The model forecasts were highly sensitive to error as-
sociated with ∆D given that it is the primary variable
in this type of modeling framework. This relatively high
uncertainty can complicate interpretation of derived GY
model outputs, which are generally used for forest finan-
cial assessments or planning of specific management ac-
tivities (e.g., Weiskittel et al. 2016b). Recognition of this
uncertainty and effective incorporation into derived out-
puts is necessary for realistic and optimal representation

of the system being forecasted. Overall, the Bayesian
probabilistic framework presented here highlights the
importance of uncertainty in deterministic modeling and
is flexible enough to be adapted to other regions, mod-
eling approaches, or ecological systems.
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A.2 Supplemental Materials S2

Model form and fit statistics for each of the equations
used in the analysis.

A.3 Supplemental Materials S3

Parameter estimates, standard errors, and associated
p-values for the models used in this analysis.
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