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Abstract. Dynamic-equation-based self-referencing models of the form Y = f(t, t0, y0) describe changes
in Y as a function of a longitudinal variable t and an unobservable cross-sectional variable X, which is
implicitly represented by a known snapshot observation of Y , y0, at an arbitrary value of t, t0. The
unobservable variable X denotes the environment potential, or site, which cannot be directly measured
or precisely defined due to its extreme complexity and variability. While elusive and difficult in handling,
X is the most critical variable of the site equations due to its disproportionate impact on the modeled
dynamics. All traditional approaches to such modeling are predominantly based on a detailed analysis of
primarily longitudinal relationships Y = u(t), which subsequently, to be helpful in practice, are modified
into the self-referencing forms, thus incidentally accounting for the site impacts. All the former approaches
devote little to no effort to explicitly model the cross-sectional relationships governed by the unobservable
variable X.

I hereby present a proof of a concept for a novel approach to derivation of the dynamic-equation-based
self-referencing models that unifies the modeling efforts of defining the yield and site relationships equally,
by focusing primarily on direct mathematical formulations describing the theory of the yield-site relation-
ships. This approach considers the variable t only in the secondary analysis, adding it to the framework
through modifications of the final model parameters. Despite the somewhat elusive nature of exploring
the unobservable variable properties of the site, the new approach appears to be highly empowering by
analyzing simple and direct yet more robust relationships between Y and X as opposed to those between
Y and t. The self-referencing dynamic site equations derived through this approach have all the desirable
properties of site models, such as the base-age-invariance, path-invariance, and a high degree of flexibility
with complex polymorphism and variable asymptotes.

Keywords: Site models; site index modeling; GADA models; self-referencing functions; base-age-
invariance; path-invariance.

1 Background

A scientist analyzing data of multiple development se-
ries on various sites wants to summarize the trends us-
ing a single practically useful mathematical model. The
shape of curves representing various development con-
ditions may vary due to differences between various en-
vironments, including such varying components as nu-
trient and moisture availability, growth inhibitors and
competition, individual microclimates, etc. If changes
between individual series are consistent and continuous,
a general model, rather than multiple location-specific
models, can illustrate the trends across all sites. How-
ever, because the development conditions are composed

of many variables that are not measurable within practi-
cal limitations, it is expedient to use an observed yield at
a known time to measure the individual growth poten-
tial. This leads to the development of the self-referencing
models (Northway 1985). In such models, the Y variable
is a function of both variables X and t, but in practice,
they define the value of Y at a time t as a function of a
known sample yield Y = y0, at an arbitrary time t = t0
(i.e., Y = f(t, t0, y0)).

The dynamic self-referencing models have the poten-
tial for applications in many fields where the unobserv-
able independent variable X may refer to a host, or
development conditions, nutrients and water availabil-
ity, site quality, or productivity, or, plainly, the envi-
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ronment. In general, the modeled dependent variable
may be the state or yield of a phenomenon affected by
the two independent variables, of which one is unobserv-
able and potentially multivariate or multi-dimensional.
Such models play an essential role in forest management,
where they have been in common use since around the
1930s (e.g., Schumacher 1939) and are used for modeling
site-dependent development of nearly all stand and tree
characteristics considered in forest management.

The model forms and methods of self-referencing site
equation developments have been changing over time.
Bailey and Clutter (1974) formalized the Schumacher’s
original approach as the Algebraic Difference Approach
(ADA). ADA is a parameter-based approach relying
on re-parameterizations of age-based functions into the
self-referencing forms, similar to the traditional initial-
condition equations. Practically all the dynamic site
equations derived with ADA were either anamorphic or
had fixed asymptotes. The first complex polymorphic
dynamic site equation with variable asymptotes was pro-
posed in the 1980s (Cieszewski 1987 and Cieszewski and
Bella 1989). Subsequently, Cieszewski and Bailey (2000)
formalized the method of Cieszewski (1994) as the Gen-
eralized Algebraic Difference Approach (GADA), which
is based on an initial assumption of expanding the yield-
age models to explicit static yield-age-site models (i.e.,
Y = f(t,X)) before the derivation of the dynamic site
equation (i.e., Y = f(t, t0, y0)). The development of
GADA enhanced capabilities to model more complex
site-dependent dynamics was a significant breakthrough
in the evolution of the self-referencing dynamic site equa-
tions, and it led to derivations of many such new models
with complex polymorphism and variable asymptotes.

The tendency of modeling height-age relationships
and adapting them to site variation, as opposed to, for
example, modeling height-site relationships and adapt-
ing them to age responses, has been deeply rooted in
the historically conditioned modeling culture associated
with these models. Thus, for example, the ADA ap-
proach has been used strictly as age-function oriented
and it didn’t lend itself much to thinking about the ex-
plicit site effects modeling other than in terms of one
of the yield-age model parameters. Similarly, the tradi-
tional static site equations (i.e., models with fixed base-
age site index as site parameter: Y = f(t, S)), which go
back earlier than the dynamic equations, also entirely
rely on age-dependent relationships that are modified by
adding a fixed-base-age site index to height-age models.
The same can be said about the oldest efforts of repre-
senting the height growth series in tables, which always
focused only on the height-age timeseries rather than, for
example, on isolines of the same age heights across dif-
ferent sites. Even GADA approach, which makes a step
in the right direction by encouraging the formulation of

an explicit Y = f(t,X), before the development of dy-
namic site equations, and treats the site as a modeling
variable of similar importance to that of age, is usually
executed with the primary attention given to the yield-
age relationship and its parameters, using the site X as a
modifier of that relationship. In general, the primary ef-
forts in developing the dynamic site equations have been
typically limited to looking for more suitable yield-age
equations with expectations that better yield-age equa-
tions would produce better site equations (Clutter et al
1983). Finally, even those who found previously pub-
lished site equations fit their data well are likely to at-
tribute the model suitability for their data to the model
yield-age description, rather than the yield-site relation-
ship characteristics.

The fact that many researchers view the self-
referencing functions as such that can be derived al-
most exclusively from known age-dependent equations
is ungrounded because there are many ways to derive
any model starting with different base-models. Some
authors have even ignored the actual source of applied
self-referencing dynamic equations they used, misnam-
ing them according to deemed bases of their potential
underlying yield-age relationships. Yet, many yield-age
models will fit most of the single series data similarly
well, while modeling changes across sites — especially
using only implicit site definitions — is far more chal-
lenging and may result in dramatically different fitting
success for various definitions of yield-site relationships
regardless of the yield-age base model forms. It seems
that not seeing the site modeling aspect from behind
the height-age problem framing is the main impediment
hindering the progress in many site modeling studies,
according to which many site modeling problems have
been lingering for almost a century. The emergence of
GADA has mitigated the yield-age modeling biases by
forcing the modelers to consider the site modeling ex-
plicitly at the stage of the yield-age-site base model for-
mulation. However, only the presented here methodol-
ogy is unequivocally forcing the modelers to consider the
yield-site relationship as the primary effort in deriving
the self-referencing dynamic site equations.

The reasons for avoiding modeling directly the yield-
site relationships in the past likely include the following:

1. Age is a well understood and easily measured quan-
tity while site quality is an unobservable variable
that we don’t fully understand and cannot explic-
itly measure, which discourages efforts in its direct
modeling;

2. There are many readily available age-dependent
models explicitly dealing with age, while there are
no well-established models of site responses other
than those implicit in parts of yield-age-site rela-
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tionships, which are usually taken for granted and
almost never individually considered;

3. The age-dependent relationships have been modeled
for centuries while site-dependent relationships have
not been explicitly modeled for nearly as long and
few have asked a question such as: “What could be
an explicit yield-site relationship?”

On the surface, to many practitioners, the last ques-
tion is not very interesting without considering age-
dependent changes. After all, what forest managers
want to know are the values of these changes for any
given timeframe. The site quality is just a nuisance that
makes predictions more complex and needs to be ac-
counted for. How can we talk about site responses if we
don’t know what exactly the site is and all that a site
does is modifying the age-dependent processes?

Yet, modelers have the luxury of doing things that
may seem esoteric in the context of operations but al-
low theoretical structuring of specific problems in ways
that may reveal newly possible results. Accordingly, it
seems reasonable to ask if (and if yes, then how?) we can
model the site quality responses directly without treat-
ing site quality input as a fifth wheel on a yield-age vehi-
cle. There are good reasons to believe that this should be
the direction of our efforts. One reason is that modeling
the site responses is the biggest challenge. The second
reason is that poorly modeled site responses have a sta-
tistical impact far more significant than poorly modeled
age responses. Practitioners with a substantial experi-
ence in developing site-dependent yield-age models can
attest to this, as typically the errors in fitting all sites
together are in orders of magnitude greater than those
from fitting individual site-specific yield-age curves. The
costs of adding site responses to yield-age models are
typically so great that we are unlikely to do worse if we
reverse the process and add the age responses to yield-
site models.

2 Objectives

The objective of this study is to demonstrate a new
and unorthodox unified approach to the direct deriva-
tion of self-referencing dynamic yield-site relationships
formulating its primary framework for derivations of dy-
namic site equations. The new approach unifies the ef-
forts towards modeling yield and site dynamics with re-
spect to each other. In this sense, the method is contrary
to traditional practices. It consists, most of all, of model-
ing the yield-site responses directly instead of giving pri-
ority to modeling the yield-age responses. The approach
adds the age-dependent responses as merely parameter-
modifying functions in the final dynamic yield-site equa-

tions (instead of secondarily adding the site responses to
the primary yield-age models).

3 Methods

3.1 The Theory

The most critical processes captured by algebraic dif-
ferences equations are the unified relationships between
the modeled phenomena (i.e., yield) and its environ-
ment, or host (i.e., site). Accordingly, the yield-site re-
lationship should be treated as the primary objective of
the self-referencing dynamic equation derivations, while
the yield-age relationship should be the secondary ob-
jective.

The above assertion is contrary to the past modeling
practices in derivations of the self-referencing equations
that were based primarily on modeling the relationships
between yield and age and just modified to accommo-
date site. Both site and yield are equally essential and
should be modeled within a unified framework of the
functional dependence of yield on site. Moreover, this
relationship is likely to be mathematically simpler and
more stable than, for example, the changes of yield over
time, while the later responses can be added to the uni-
fied framework at a latter, secondary rather than pri-
mary, stage of modeling.

3.2 Model Bases

Let the dependent variable, typically yield or height,
be Y , and the site quality be X. Any reasonable measure
of site quality (that we may want to model) must be
correlated with the yield of the modeled phenomena (i.e.,
Y ˜X), which, by definition, depends on site quality. It
is also reasonable to assume that for certain choices of
Y , the ratio Y/X = Constant (see Fig. 1), similar as it
is for, let’s say, height at base age and site index, which
is for all sites: H50/S50 = 1. Accordingly, similar to
the site index example, for any given site we can assume
the following expectations:

1. for certain selections of Y , for example, at specific
ages, we could observe Y/X = 1, which would be
equivalent to X/X = 1;

2. for other selections of Y , for example, younger ages,
we could observe Y/X < 1, which could be equiva-
lent to X/(X + a) < 1; and

3. for yet another selection of Y , for example, older
ages, we could observe Y/X > 1, which could be
equivalent to (X + b)/X > 1.

There are many ways in which we could model these
kinds of relations, with one of the most straightforward
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Figure 1: A relationship between a relative yield Y/X
and a simple site-parameter model deviating from an
assumed default constant (a + X)/(b + X), where a is
a fixed parameter and b is assumed to be the varying
longitudinal parameter.

generalizations, according to the above assumptions, be-
ing Y

X = X+a
X+b , or more generally, replacing with a lin-

ear function of site either the right-hand-side numerator
(c ·X +a) or denominator (c ·X + b) of this relationship,
which could result in the following simple example:

Y

X
=

X + a

c ·X + b
, (1)

where:

� a, b, and c, are the model parameters modify-
ing the yield over site relationship, with at least
one or more of them being a time-related varying-
parameter (e.g., varying with different selections of
t); and

� X is the site quality, such thatX = 1/2 ·(
K ±

√
K2 + 4b · Y

)
, whereK = c · Y − a. How-

ever, since for positive values of b and Y , which is
a reasonable assumption to make, only the positive
root is desirable for consideration, I consider here-
after onlyX = 1/2 ·

(
K +

√
K2 + 4b · Y

)
.

Assuming for simplicity that only parameter b varies
in Eq. (1) (see Fig. 1), we can define for deriving dynamic
equation a specific solution for site, designating it as the
reference point, as follows:

X0 = 1/2 ·
(
K0 +

√
K2

0 + 4b0 · y0
)
, (2)

where:

� K0 = c · y0 − a;

� y0 is a known value of Y at an arbitrary age t = t0,
and it is used as an implicit X site quality measure;
and

� b0 is the model varying-parameter b marked with
the subscript as belonging to the specific solution
for site quality X0, which is necessary for the use-
fulness of this solution in further development of the
dynamic self-referencing site equation.

The dynamic self-referencing equation defining a
yield-site relationship (Fig. 2) with an implicit definition
of site quality is then derived substituting X in Eq. (1)
with the specific solution X0 in Eq. 2, which produces
the following self-referencing dynamic equation of yield
as a function of site measured implicitly by a known
yield observation:

Y = y0
c ·X0 + b0
c ·X0 + b

, (3)

where:

� X0 is defined by Eq. (2) with varying parameters b
and b0 to be substituted by a function of a longi-
tudinal variable, such as for example, a function of
time;

� the subscript “0” on the model parameter b0 is
maintained to keep track of the complete defini-
tion of the specific solution for site quality, without
which Model (3) would not be practically usable in
operational implementations; and

� all other symbols are as previously defined.

Figure 2: A hypothetical relationship between site or
host conditions and yield.

Model (3) represents the self-referencing dynamic
equation based on the simple assumptions about yield-
site relationships defined by Eq. (1). It is ready for a
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Table 1: Examples of basic functions of a single variable that can be used for substituting the parameters b, b0, c
and c0 in the size-site models (3)–(5) to incorporate the additional longitudinal variable t; the functions in the table
have been adapted to the inverse requirement for the parameter substitution.

Function Name Function General Defini-
tion

Definition of b
Definition of c

Definition of b0

Definition of c0

1. Linear F (x) = p1 + p2 · x b = b1/(b2 + t)
c = c1/(c2 + t)

b0 = b1/(b2 + t0)
c0 = c1/(c2 + t0)

2. Quadratic F (x) = p1 + p2 · x + p3 · x2 b = b1/(b2 + b3 · t + t2)
c = c1/(c2 + c3 · t + t2)

b0 = b1/(b2 + b3 · t0 + t20)
c0 = c1/(c2 + c3 · t0 + t20)

3. Power F (x) = p1 · xp2 b = b1/t
j

c = c1/t
w

b0 = b1/t
j
0

c0 = c1/t
w
0

4. Exponential F (x) = p1 · px2 b = b1/b
t
2

c = c1/c
t
2

b0 = b1/b
t0
2

c0 = c1/c
t0
2

5. Logarithmic F (x) = p1 · ln(t + 1) b = b1/ ln(t + 1)
c = c1/ ln(t + 1)

b0 = b1/ ln(t0 + 1)
c0 = c1/ ln(t0 + 1)

straightforward implementation into any specific model-
ing situation using other variables, such as age, diame-
ter, or basal area. The other variables’ implementation
into the model consists merely of defining the varying-
parameter b (and b0) as appropriate basic functions of
age, diameter, basal area, or any other longitudinal mea-
sure of interest.

4 Results

Model (3) is derived from direct modeling of unified
yield-site relationships with relatively simple and eas-
ily adaptable assumptions. One can easily modify this
model to incorporate additional variables by replacing
the varying-parameters with site-independent parame-
ters and any of their arbitrary functions. Table 1 con-
tains examples of potential definitions of b, b0, c, and c0,
based on the five basic mathematical functions listed
there.

For the presentation clarity, let us assume that in
Model (3) c =1. A simple example of a suitable sub-
stitution for the varying parameter b and b0, could be a
function increasing nonlinearly with time, which would
be a reasonably expected behavior. Given one of the
most straightforward functions, let us say, t2, and the
fact that the parameters with the subscript “0” corre-
spond to variables with the same subscript, the substitu-
tions would be: b→ b1/t

2 and b0 → b1/t
2
0, which would

lead to derivation of the following dynamic equation:

Y(t,t0,y0) = y0
a− y0 − 2 b1

t02 −
√

4y0b1
t02 + (a− y0)

2

a− y0 − 2 b1
t2 −

√
4y0b1

t02 + (a− y0)
2

,

which in a more compact notation is:

Y(t,t0,y0) = y0

(
b1 + X0 · t20

)
· t2

(b1 + X0 · t2) · t20
, (4)

where:

� X0 = K0 +
√
K2

0 + 4b1 · y0/t20 and K0 = y0 − a;

� a, and b1 are the model’s estimable global parame-
ters;

� y0 is the model’s estimable local parameter, and t0
is a constant (or vice versa);

� t is the independent variable and Y is the dependent
variable; and

� t0 and y0 are the model’s reference points, such that
y0 = Y if t = t0, or Y (t0) = y0.

Model (3) can define many other models. To derive
different models from Eq. (3), one needs to substitute
the parameters: b and b0, with any other arbitrarily suit-
able basic functions of age, or other variables, directed
by expectations of the model reasonable responses with
respect to the simulated processes. Various additional
substitutions are also possible using any of the basic age
functions in Table 1, or other similar functions. No-
tably, the new models do not have to be designed only
for growth but can also be formulated to model survival
and other processes.

Finally, the functionality of Model (3) can be easily
expanded by modifying assumptions about the varying
parameters. A simple example of that could be defining
parameter c as another varying parameter, which would
result in a different more general model than Eq. (3).
Symbolically:

Y = y0
c0 ·X0 + b0
c ·X0 + b

, (5)
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where:

� c, c0, b, and b0, are the model varying-parameters,
which need to be substituted by appropriate func-
tions of time as in the above example of derivation
of Model (4) and examples of the basic functions in
Table 1; and

� X0 is defined by Eq. (2) with K0 = c0 · y0 − a;

� the subscript “0” on the model parameter b0 and c0
is maintained to keep track of the complete defini-
tion of the specific solution for site quality, without
which Model (5) would not be practically usable in
operational implementations; and

� all other symbols are as previously defined.

Model (5) and (3) represent the simple primary direct
yield-site modeling assumptions described by Eq. (1)
with different assumptions about the time-dependent
varying parameters. The implementations into opera-
tional uses are similar for both models. Derivation of
Model (4) illustrates example of such implementation,
which is based on substituting the selected varying pa-
rameters (i.e., b,b0, c, and c0) with arbitrary, yet appro-
priate, functions of other variables, such as age, diame-
ter, or basal area, or any other longitudinal variable of
interest (e.g., Tab. 1).

5 Discussion

The presented here study constitutes a proof of con-
cept for a novel approach to derivation of advanced self-
referencing dynamic equations that are essential in forest
management, where they have multiple uses. In growth
and yield modeling, they are used to model many pa-
rameters relating to forest inventory, including diame-
ters, heights, basal area, volume, and mortality. In other
fields, they can also have applications such as, for exam-
ple, in the medical sciences, one can use them to predict
expected future individual height based on the infant
height measurements.

Forest managers have been trying for centuries to de-
velop the best possible methods of using data describ-
ing a population’s state to predict or estimate this pop-
ulation’s future and past conditions. Such knowledge
is necessary for efficient forest management and guid-
ance in silvicultural practices applied to vast areas of
forest populations. The need of, and the interest in,
self-referencing functions is more than a century old.
It reaches the oldest times when forest managers first
wanted to recognize the site influence on forest popula-
tions’ growth and development in either tables or graphs
containing information on time-series developments on
multiple sites. Such models in the form of tables and

graphs were used with interpolation between different
series based on actual observation of growth in the field.
The mathematical models in this category have drasti-
cally evolved since. The directions of changes followed
different paths with a general regularity of developing
from simple anamorphic, through simple polymorphic,
to complex polymorphic, while also transitioning from
static models based on mathematically intractable fixed
base-age site indices to dynamic equations based on di-
rect uses of any age-height combinations resulting in
base-age-invariant and path-invariant predictions defin-
ing unequivocally consistent trajectories.

The static models used to lead the evolutional changes
in reaching greater model flexibility. They started at
the beginning of century, about 40 years before the dy-
namic equations. The first static polymorphic site equa-
tions with variable asymptotes originated in the 1970s.
The first dynamic equation with polymorphism and vari-
able asymptotes began a decade later (Cieszewski 1988,
Cieszewski and Bella 1989). Although the dynamic mod-
els lagged behind the static models with their origin and
subsequent advancements due to their much more de-
manding mathematical complexity, the dynamic equa-
tions eventually superseded the static models in the
number of forms, complexity, flexibility, and the number
of alternatives for their development. With the emer-
gence of GADA models and subsequently the presented
here new approach to the direct derivation of yield-site
dynamic equations — easily modifiable to implement a
variety of modifying functions of age — the static site
equations are becoming obsolete.

The approach proposed here breaks the century-
long tradition of modeling the site-dependent changes
through primarily modeling age-dependent relationships
and merely modifying them to accommodate the site im-
pacts. Instead, the new approach focuses directly on the
most important and challenging question of the yield-
site relationships. Surprisingly, this seemingly counter-
intuitive approach is founded on extreme simplicity, such
as modeling a set of lines deviating from a central hor-
izontal line of a constant relationship (see Fig. 2). Yet,
this approach leads to the derivation of extremely pow-
erful self-referencing dynamic equations with unprece-
dented flexibility.

6 Conclusions

Deriving self-referencing models, changing priority
from primary yield-age modeling (subsequently modified
to implement site effects) to primary yield-site modeling
(subsequently modified to accommodate time changes)
unifies the yield dynamics with the site effects result-
ing in more straightforward yet more powerful modeling
possibilities. The unified theory of algebraic difference
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approaches differs from all previously known methods.
It focuses primarily on modeling the yield-site relation-
ships directly instead of focusing primarily on the age-
dependent functions. The deriving of self-referencing ad-
vanced dynamic site equations through primarily model-
ing the yield-site unified framework relationship is sim-
pler and more potent than all former possibilities pro-
vided by other more traditional age-based approaches.
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and cluttered and easier to follow. All the accounts of
what has been done in this area come from my famil-
iarity with the subject. All those who have more than
40 years of experience in this area, or produced more
in this field than I did, and contributed more advance-
ments in this area than I did through GADA invention
and other related developments, hopefully, will forgive
me this presentation style. Other readers, with possibly
lesser experience, I beg to have patience with this pre-
sentation and to consider what I believe is true and set
forth as helpful background for the presented material.
The proposed method of dynamic self-referencing site
model derivation is the best idea I have ever discovered
regarding this subject.
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