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Abstract. Estimates of quantitative variables in forest stands often are required. Light Detection and
Ranging (LiDAR) can create three-dimensional point clouds of forest structures and ground surface
elevation maps. These features are useful for quantifying forest stand parameters such as volume and
canopy height at broad scales. This study explores the potential of applying copulas and LiDAR metrics to
obtain diameter and height estimates. Predicted values were compared with field measurements. Diameter
and height distributions were obtained using moment–based parameter recovery and prediction of moments
using nonlinear least squares from LiDAR attributes. We then used copula methods to link the diameter
and height distributions. Using the diameter and height distributions, other attributes such as volume or
carbon content can be estimated and summed to obtain area-based estimates.

Keywords: stand structure, height-diameter relationships, bivariate distributions, copulas, moment-based
parameter recovery

1 Introduction

Estimates of quantitative variables in forest stands are
required by forest managers to evaluate forest resources
and to schedule future silviculture treatments (Clutter
et al., 1983). Because measurements of tree height and
diameter are expensive and laborious, it is desirable to
predict these variables in many situations. Light De-
tection and Ranging (LiDAR) is an increasingly popu-
lar method of remote sensing because it provides three-
dimensional point clouds to develop detailed canopy sur-
face and ground surface elevation maps and has poten-
tial to estimate stand or individual tree attributes across
large geographic areas (Asner et al., 2011; Hummel et
al., 2011; Reutebuch et al., 2005; Wulder et al., 2008).
Most efforts in analyzing LiDAR data focus on point
estimation or individual tree estimation which requires
exact georeferencing from field-based training data to Li-
DAR data (Kaartinen et al., 2012; Maltamo et al., 2009;
White et al., 2013). While point estimates are useful in
making management decisions, a better use of LiDAR
datasets might be found by predicting distributions of
forest inventory attributes.

Developing methods for estimating diameter and
height distributions using probability distribution func-
tions can result in biological- and economical-based pre-

dictions that are more informative to forest managers.
Various probability distributions and methods for es-
timating parameters of those distributions have been
used to model diameter distributions and characterize
the height-diameter relationships via airborne LiDAR
scan (ALS) data (Arias-Rodil et al., 2018; Gobakken
and Næsset, 2004; Mehtätalo et al., 2007; Thomas et al.,
2008). One of the most popular methods, Weibull distri-
butions with moment-based parameter recovery, shows a
potential link in developing landscape-level approaches
to LiDAR prediction (Arias-Rodil et al., 2018; Mehtätalo
et al., 2007). Due to the ability of obtaining good height
estimates from ALS, there is a potential to build rela-
tionships between diameter and height with lower inven-
tory costs and associated errors.

A copula, with an emphasis on modelling population
distributions, is a special class of multivariate distribu-
tions where the marginal distributions are all uniform
distributions [0,1] (Genest and MacKay, 1986; Nelson,
2006). The uniform distribution can be replaced with
any probability distribution and stripped from the cop-
ula through the statistical process of translation (Gen-
est and MacKay, 1986; Nelson, 2006). By translating
into any mix of distributions (Nelson, 2006), copulas be-
come a flexible and powerful tool for analyzing depen-
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dent processes arising from a number of different under-
lying factors (Genest and MacKay, 1986; Wang, 1998).
Because of the strong relationship between diameter and
height, copulas provide a possible framework for devel-
oping LiDAR-based analyses that may have broader ap-
plication domains than the region from which they were
developed (MacPhee et al., 2018). While copulas have
been widely applied in many fields (Frees and Valdez,
1998; Genest and MacKay, 1986; Nelson, 2006; Wang,
1998; Yan, 2007), they have only recently been applied
to forest spatial structures (Kershaw et al., 2010) and
individual tree height-diameter relationships (MacPhee
et al., 2018; Wang et al., 2008, 2010). The use of para-
metric methods in estimating diameter and height distri-
butions from ALS via copula is still largely unexplored.
LiDAR presents many opportunities for individual tree
analyses and attribute estimation (e.g., Ayrey et al.,
2017; Brandtberg et al., 2003; Culvenor, 2002; Li et al.,
2012). Copula-based diameter-height models may pro-
vide a method to improve individual tree attribute pre-
diction from LiDAR data.

This study utilizes an ALS dataset to estimate copula-
based diameter and height distributions in mixed species
Acadian Forests in New Brunswick, Canada. The pri-
mary objectives were: 1) to develop diameter-height cop-
ulas based on LiDAR-derived distribution moments and
moment-based parameter recovery; and 2) explore the
accuracy of LiDAR-derived diameter-height copulas.

2 Materials and Methods

The whole procedure of LiDAR-derived diameter-
height copula development and model comparisons is
shown in Figure 1.

2.1 Study Site

The Noonan Research Forest (NRF, N45◦59′12′′,
W66◦25′15′′), located 30km northeast of Fredericton,
New Brunswick, Canada, is approximately 1500ha and
is composed of a diversity of stand structures and species
compositions typical of the Acadian Forest (Loo and
Ives, 2003).

Field Data—Eighty-three 0.04ha fixed-area permanent
sample plots were established on a 100m by 100m sam-
ple grid across the NRF’s Femelschlag Research Area.
All live trees ≥ 6.0cm DBH were identified by species,
and DBH (nearest 0.1cm) and total height (HT; nearest
0.1m) were measured. All plots were measured in 2014.
The mean number of species per Femelschlag plot was
about 5 (range was 2 to 8). The other forest character-
istics including DBH, quadratic mean diameter, height,
stand density and volume for the Femelschlag plots are
shown in Table 1.

Table 1: The average, range and standard deviation
(Std. Dev.) of plot-level mean diameter at breast
height (DBH), quadratic mean diameter at breast height
(Dq), height (HT), quadratic mean height (HTq), stand
density (TPH) and correlation between DBH and HT
(DHcor) for the 83 Femelschlag plots.

Plot Attribute Mean Min. Max. Std. Dev.

DBH (cm) 15.5 9.7 24.5 3.1
Dq (cm) 17.4 10.5 26.8 3.4
HT (m) 12.4 8.8 17.4 1.8
HTq (m) 13.2 9.0 17.6 1.9
TPH (# ha−1) 1883 575 4375 807
DHcor 0.836 0.668 0.938 0.064

Airborne Laser Scanning Data—A LiDAR scan was ob-
tained on August 2 to September 28, 2015, during leaf-
on conditions, using an airborne Riegl Q780i scanner
mounted on a plane. The mean flying altitude above
sea level was approximately 1,000m. The sensor pulse
repetition frequency was between 300 and 400KHz, and
the laser wavelength was 1,550nm with a scan angle be-
tween−34◦ to 36◦ from the nadir. The mean swath pulse
density was 3 pulses per m2 (this was flown at 50% over-
lap, providing a final density of 6 pulses per m2) with a
footprint size of 0.35m2 and the sensor collected up to
10 returns per pulse.

2.2 LiDAR Processing

Various LiDAR metrics were derived from LiDAR
point clouds. A ground surface model was derived from
the last returns and interpolated across the regions of
interest using the lasground() function in the lidR pack-
age (Roussel et al., 2020). LiDAR returns were then
classified as either ground or non-ground points and the
ground points removed. Elevations of LiDAR returns
(Z) were converted to heights above ground (H) by sub-
tracting interpolated ground elevation (G) from Z using
the lasnormalize() function in the lidR package. All Li-
DAR manipulations were conducted in the R statistical
software (R Development Core Team, 2021).

LiDAR Metrics—As recommended by Hayashi et
al. (2015), 20m by 20m LiDAR cells centered on the
Femelschlag plot centers were used to extract met-
rics, and then used to fit relationships between the
Femelschlag plot data and the LiDAR metrics. Nine-
teen unique LiDAR metrics (Table 2) were extracted
from the ground-normalized LiDAR HT distributions.
Canopy height surface models established by the first re-
turns and point heights for given distributional quantiles
were used to obtain height-based metrics. Different re-
turn numbers per m3 of plot space from ground, canopy
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Figure 1: Procedure of approach establishment, simulation design and model comparison.

and the total LiDAR points were used to determine the
density-based metrics. The variation in horizontal and
vertical distributions were represented by crown rugos-
ity and kurtosis. Lacunarity (Plotnick et al., 1993), as
measure of gap size, was used to characterize horizontal
heterogeneity.

2.3 Diameter-Height Modelling

Diameter Marginal Distribution Modeling—Because
the truncated Weibull function consistently has shown
to be more accurate for diameter distribution model-
ing than beta or Johnson’s SB functions (Bailey and
Dell, 1973; Borders and Patterson, 1990; Little, 1983;
Palah́ı, 2007; Zutter et al., 1982), the two-parameter,
left-truncated Weibull distribution (Bury, 1975; Zutter
et al., 1986) was used to model diameter distributions.
The algorithm (moment-based parameter recovery) pro-
posed by Burk and Newberry (1984) was used to recover
the parameters from the predicted moments. Prediction
systems using NLS estimation and LiDAR metrics as
predictor variables were developed. A custom R func-
tion based on Burk and Newberry’s (1984) algorithm
was used to recover parameters from the predicted mo-
ments.

The two-parameter, left-truncated Weibull distribu-
tion includes a scale parameter and a shape parame-
ter. The minimum DBH measured in the field data was
6.0cm and was used as the truncation point. To recover

the Weibull shape and scale parameters, the first two
moments of the distribution were required (Burk and
Newbury, 1984). The first two moments are defined by
the arithmetic mean

(
D
)
and the quadratic mean Dq

diameters. Either (1) both moments need to be esti-
mated, or (2) one moment estimated directly and the
difference

(
∆ = Dq −D

)
, standard deviation (SD), or

coefficient of variation (CV ) estimated and the other
moment calculated. Commonly, the second approach
is used predicting Dq and SD because it assures that
Dq ≥ D.
After an exhaustive search using a combination of

graphical methods, boosted regression methods, and
preliminary model screening, the following equation
form was adopted for predicting Dq:

Dq = b0 · q15LiDARb1 · q45LiDARb2 , (1)

where q15LiDAR = the 15th quantile of the LiDAR HT
distribution and q45LiDAR = the 45th quantile of the
LiDAR HT distribution. Standard deviation of the DBH
distributions (s(D)) was predicted using:

s (D) = b0 · q75CHT b1 , (2)

where q75CHT = the 75th quantile of the canopy surface
model.

Height Marginal Distribution Modeling—Because of the
presence of emergent trees on some plots, the four-
parameter Beta distribution (Bury, 1975) was used to
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Table 2: LiDAR metrics and associated statistics (mean ± stand deviation) for use in modeling forest attributes on
the Femelschlag plots.

No. Metric Definition Statistics

1 MaxCHT Maximum canopy surface height 30.2 ± 10.4
2 MeanCHT Mean canopy surface height 14.2 ± 1.3
3 q25CHT 25th percentile of canopy surface height 12.1 ± 1.9
4 q50CHT 50th percentile of canopy surface height 15.0 ± 1.4
5 q75CHT 75th percentile of canopy surface height 17.1 ± 1.2
6 q15LiDAR Height of 15th percentile of point clouds 5.8 ± 1.4
7 q25LiDAR Height of 25th percentile of point clouds 8.5 ± 1.3
8 q35LiDAR Height of 35th percentile of point clouds 10.4 ± 1.2
9 q45LiDAR Height of 45th percentile of point clouds 11.9 ± 1.2
10 q55LiDAR Height of 55th percentile of point clouds 13.2 ± 1.2
11 q65LiDAR Height of 65th percentile of point clouds 14.4 ± 1.2
12 q75LiDAR Height of 75th percentile of point clouds 15.5 ± 1.1
13 q85LiDAR Height of 85th percentile of point clouds 16.8 ± 1.1
14 q95LiDAR Height of 95th percentile of point clouds 18.7 ± 1.0
15 Kurtosis Kurtosis of return heights 2.8 ± 0.4
16 Rugosity Roughness of canopy surface 6.8 ± 1.5
17 Rumple Ratio of the canopy surface area to plot area 5.8 ± 1.4
18 LAD Leaf area density 0.5 ± 0.1
19 Lacunarity Gap size of the canopy surface 1.1 ± 0.2

model the height marginal distribution. The four-
parameter Beta distribution is a variant of the Beta
distribution that transforms the [0, 1] distribution to
a [Min,Max] distribution. Thus, the four parameters
were Minimum HT (HTmin), Maximum HT (HTmax),
and the two shape parameters λ1 and λ2 (Bury, 1975).
The HTmin was 1.3m corresponding to breast height.
Maximum height was predicted from LiDAR using:

HTmax = b0 ·MeanCHT b1 · q75LiDARb2 , (3)

where q75LiDAR = the 75th quantile of the LiDAR HT
distribution. Similar to the procedure for Weibull pa-
rameter recovery, the two shape parameters can be re-
covered from estimates of the first two moments. As
with diameter, we predicted the quadratic mean heights
(HTq) and SDs (s(HT )). The shape parameters (λ1 and
λ2) were recovered using an approach similar to Burk
and Newberry (1984) but modified to reflect the Beta
distribution.

The following equation was used to predict HTq from
LiDAR:

HTq = b0 · q75CHT b1 · q15LiDARb2 · q45LiDARb3 ,
(4)

where q75CHT = the 75th quantile of the canopy surface
model; q15LiDAR = the 15th quantile of the LiDAR
HT distribution; and q45LiDAR = the 45th quantile of
the LiDAR HT distribution. Standard deviations of the

HT distributions (s(HT )) were predicted from LiDAR
using:

s (HT ) = b0 · q25CHT b1 · q75LiDARb2 , (5)

where q25CHT = the 25th quantile of the canopy surface
model and q45LiDAR = the 45th quantile of the LiDAR
HT distribution. HTq and s(HT ) were calculated for
each Femelschlag plot from the individual tree data and
combined with the LiDAR metrics. All equations were
estimated using the nls() function in R (R Development
Core Team, 2021).

Number of Trees per Hectare—Before using copulas to
link predicted DBH and HT distributions, the number
of standard normal variates is required (i.e., the number
of trees to simulate). We directly estimate the num-
ber of trees per hectare (TPH, stems/ha) using LiDAR
metrics. The equation for predicting TPH was:

TPH = b0 · q15LiDARb1 ·MeanCHT b2 ·Kurtb3 , (6)

where q15LiDAR = the 15th quantile of the LiDAR HT
distribution; MeanCHT = the mean canopy HT esti-
mated from the canopy surface model; and Kurt = kur-
tosis of return heights.

DBH-HT Correlation—The copula required an estimate
of the correlation between DBH and HT (DHcor). Be-
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cause 0 ≤ DHcor ≤ 1, a logistic equation was adopted:

DHcor =
e(b0+b1·MeanCHT+b2·q25LiDAR)

1 + e(b0+b1·MeanCHT+b2·q25LiDAR)
, (7)

where MeanCHT = the mean canopy HT estimated
from the canopy surface model; and q25LiDAR = the
25th quantile of the LiDAR HT distribution.

Copula Model—MacPhee et al. (2018) compared non-
linear mixed effects (NLME), random forest imputation
(Breiman, 2001; Temesgen and Ver Hoef, 2015), and
copula methods for predicting heights from diameters.
In this study, we estimate stand density from LiDAR
metrics first, and then the goal is to predict the joint
distribution of DBH and HT via copula methods. Non-
linear least squares (NLS) was used in this study instead
of NLME because we did not stratify the Femelschlag
plots by forest type due to the limited numbers of plots
in conditions other than a mixed species, multicohort
state. The field measured data and attributes from
the Femelschlag plots were used to parameterize copula
models.

A normal copula was used to model and simulate
the relationship between DBH and HT (Genest and
MacKay, 1986; Kershaw et al., 2010; MacPhee et al.,
2018). The approach used in this study followed that
presented by Kershaw et al. (2010) and MacPhee et
al. (2018). Diameters and heights were predicted for
each tree based on random sampling from a normal cop-
ula. The procedure was as follows:

1. The number of standard normal variates for diam-
eter (SD) and height ((SH) distributions were ran-
domly generated based on the estimated number of
trees per plot (eq. 6). Both SD and SH are Normal
distribution variates with a mean of 0 and standard
deviation of 1.

2. SH and SD were column-bound to form a matrix
called [S]. Both SH and SD columns were corre-
lated by multiplying a symmetric positive-definite
square matrix established by the correlation be-
tween DBH and HT (DHcor, eq. 7):

[C] = [S] · chol
([

1 DHcor

DHcor 1

])
, (8)

where [C] is the correlated standard Normal vari-
ates; chol () is the Choleski decomposition of the
symmetric correlation matrix.

3. The inverse (cumulative) normal distribution func-
tion was used to strip off the normal distribution.
This matrix of uniform correlated marginals ([U ])
is the multivariate copula.

4. The left-truncated, two-parameter Weibull distri-
bution was used to model the DBH distribution
(eqs. 1–2) and was applied to the second column of
[U ] to obtain DBH estimates. Similarly, the four-
parameter Beta Distribution was used to model the
HT distribution (eqs. 3–5) and applied to the first
column of [U ].

The copula links the predicted HT and DBH distribu-
tions. Both DBH and HT were estimated by randomly
sampling from the copula. We initially explored using 1,
5 and 10 random samples but, as found by MacPhee et
al. (2018), the mean DBH was unaffected by sample size
while the SD slightly decreased with increasing copula
samples. Therefore, we only present results for the aver-
age of 5 random samples and 100 replicates. DBH–HT
distributions were simulated and compared to the field
measured distributions.

2.4 Statistical Analyses

Differences between field measured values and the
predictions derived from ALS data were examined by
1:1 plots and locally weighted scatterplot smoothing
(LOWESS, Cleveland, 1979; Kutner et al., 2004) to high-
light differences over the range of observed and pre-
dicted values. Two point-wise measures of goodness-
of-fit, mean bias (MB), and root mean squared error
(rMSE) were calculated:

MB =

n∑
i=1

(Observedi − Predictedi)

n
(9)

and

rMSE =

√√√√ n∑
i=1

(Observedi − Predictedi)
2

n
, (10)

where Observedi was a parameter calculated from
field measurements on the ith Femelschlag plot, and
Predictedi was a parameter derived from ALS data, and
n was the total number of Femelschlag plots.

In this study, the focus is on DBH and HT distribu-
tions rather than individual tree DBH and HT predic-
tions. Point-wise goodness of fit statistics for individual
trees were not evaluated. Instead, we used the bivariate
mixed two-sample method to compare the HT-DBH dis-
tributions derived here based on Euclidian distance mea-
sures (MacPhee et al., 2018; Narsky, 2003a; Schilling,
1986). Briefly, the bivariate mixed two-sample method
selects a random sample from distribution A and cal-
culates the Euclidian distance from all other points in
A and all points in distribution B, and then repeats the
process selecting a random sample from B and calculates
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the Euclidian distance from all other points in B and all
points in distribution A.

The set of k nearest neighbors is determined and the k
nearest neighbors classified as either belonging to AA or
BB (INN = 1) or AB or BA (INN = 0) If the two distri-
butions are identically distributed, the average of INN

should be 0.5 since there would be an equal probabil-
ity that the nearest neighbor would be from distribution
A or B (Narsky, 2003b). Because single nearest neigh-
bor statistics can be quite variable (Ripley, 2004), this
study followed the recommendation from MacPhee et
al. (2018) and used k=3 nearest neighbors to calculate
INN .

3 Results

3.1 Marginal Distributions

Table 3 shows the parameter estimates, standard er-
rors, and associated NLS regression statistics for Eqs. 1–
7. In general, the ALS data provided metrics that ex-
plained lower proportions of the variation in the diam-
eter moments and resulted in higher root mean square
errors (rMSEs) than the height moments. For predict-
ingDq, the model accounted for 34% of the variation and
had an rMSE of 2.8cm, while the HTq model explained
47% of the variation with a rMSE of 1.3m. The model
predicting s (D) accounted for 23% of the variation with
a rMSE of 1.7cm. Around 49% of the variation in s(HT)
was explained with an rMSE of 0.7m. Compared to the
other two height moments, only 28% of variation was
explained in HTmax with a rMSE of 2.5m. The model
predicting TPH accounted for 50% of the variation and
had a rMSE of 569 trees/ha. Less than 20% of the
variation in DHcor was accounted for with a rMSE of
0.06.

The observed and predicted parameters for DBH,
HT , TPH and DHcor are presented in Figure 2. No
matter which parameter is considered, small observa-
tions were always overestimated and large observations
were always underestimated. Mean bias (MB) and
rMSE for parameters of DBH, HT and DHcor are pre-
sented in Table 4. Similar to the fit results, models for
height moments predicted much better than models for
diameter moments. Bias for TPH model was < 1%
and errors were typically < 30%. The model predicting
DHcor had about -0.02% bias and about 7% error.

3.2 Copula-based HT-DBH Distributions

Table 5 shows the differences in the mixed two-sample
index of goodness of fit (INN ) between field HT-DBH
distribution and the 100 simulated copula-based HT-
DBH distributions. While differences in marginal distri-
butions were observed, the resulting copulas produced
similar ranges and shapes for the estimated HT-DBH

distributions. Around 60% of the plots had average INN

values between 0.60 and 0.75. and 30% of the plots fall in
the interval of INN values between 0.75 and 0.90. Only
10% of the plots had INN values close to 0.50.

Figure 3 shows the HT-DBH distributions for field
measurements and copulas-based models for 9 field plots.
Most copula-based models predicted the HT-DBH dis-
tributions well in the range of 10–30cm DBH and 5–20m
HT. Both smaller (DBH < 10cm and/or HT < 5m) and
larger trees (DBH > 35cm and/or HT > 20m) were not
frequently predicted, especially the larger trees (Fig. 3).

Bimodality in DBH distributions impacted INN

(Figs. 3D–3F). Plots with bimodal distributions tended
to have large values of INN indicating a higher probabil-
ity of a nearest neighbor being a copula sample rather
than a field measure. The copulas simulated here were
continuous distributions. If field measures were discon-
tinuous, then it was more likely to have a copula simu-
lated value nearer than a field value.

Variation in HT also had greater influence on INN

than did variation in DBH (Figs. 3G–3I). Plots with
large variation in HTs for a given diameter often had
INN values > .80. Large values of INN indicate that
field observations have a higher probability of having a
nearest neighbor that belongs to the copula-based HT-
DBH distribution than to the field distribution (i.e.,
the two distributions are distinctly different). For these
plots, the DBHs tended to be evenly dispersed between
6 and 30cm rather than concentrated in large or small
size classes. While DBHs were evenly distributed, HTs
exhibited large levels of variation within DBH classes.
Plots with the better performance were ones which had
well-defined modal distributions of DBH with narrower
HT distributions (Figs. 3A–3C).

4 Discussion

While LiDAR provides a rich 3D data structure, the
most intuitive metrics utilized in many studies are those
related to individual tree heights (Ayrey et al., 2019).
Although LiDAR cannot directly extract individual tree
diameters in the same manner as heights are extracted,
we have shown that this important size variable can be
estimated from LiDAR using moment-based parameter
recovery methods and copulas. Using the Femelschlag
data and LiDAR attributes, a set of predictors for the
required moments (Table 3) were developed and the re-
sulting estimates generally fit the observed data well
in terms of root mean square errors but much varia-
tion remained unexplained (Table 3). The goodness-of-
fits of the resulting HT-DBH copulas were more var-
ied (Table 5). Plots with bimodal DBH distributions
generally had the poorest performance (Fig. 3). Arias-
Rodil et al.’s (2018) model for estimating Dq explained
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Table 3: Parameter estimates, standard errors (in parentheses), pseudo-R2 for estimation of Weibull moments for
DBH distributions, Beta moments for HT distributions, number of trees per ha (TPH) and correlation between DBH
and height (DHcor) using LiDAR data.

Attribute Parameter Estimate Regression Summary

b0 b1 b2 b3 rMSE Pseudo-R2

Dq
0.7021 -0.2015 1.4345

- 2.7529 0.3437
(0.3571) (0.0656) (0.2291)

s (D)
0.0394 1.854

- - 1.6975 0.2292
(0.0429) (0.3813)

HTq
2.3182 -0.7066 -0.1804 1.6375

1.3347 0.4734
(1.3005) (0.3843) (0.0494) (0.3079)

s (HT )
0.0115 -0.1958 2.3559

- 0.7032 0.4914
(0.0081) (0.0533) (0.2745)

HTmax
1.5102 -0.5401 1.5101

- 2.5058 0.2813
(0.7354) (0.2777) (0.3593)

TPH
3122279.5 0.6305 -3.4797 0.6688

568.712 0.4972
(3142066) (0.192) (0.418) (0.2886)

DHcor
-0.3206 0.2795 -0.2353

- 0.0582 0.1758(0.5242) (0.0653) (0.0696)

Table 4: Mean bias (observed – predicted), root mean
square error (rMSE) for parameters of diameter, height,
density and correlation for LiDAR data.

Attribute Parameter bias rMSE

Diameter QuadMean (Dq) 0.0032 2.7529
Std Dev (s(D)) 0.0025 1.6975
Shape -0.1847 0.8607
Scale -2.2715 6.5327

Height QuadMean (Hq) 0.0013 1.3348
Std Dev (s(H)) 0.0005 0.7032
Maximum (Hmax) 0.0012 2.5058
λ1 0.0873 0.9900
λ2 0.1686 1.3393

Density TPH 10.1205 550.2932
Correlation HDcor -0.0001 0.0582

80% of the observed variability with a rMSE value of
3.42cm. Although less variation was explained in our re-
sults, our rMSE value for theDq equations were smaller
(2.75cm; Table 3). These discrepancies may be partially
explained by differences in stand structure and individ-
ual tree size. The mature forest stands of P. radiata, a
shade-intolerant conifer species, in Galicia were the main
data used for Arias-Rodil et al.’s (2018) study. Our for-
est structures were more complex leading to lower per-
cent variation explained; however, when the rMSEs are
expressed on a per cent of mean Dq, the two studies
have almost equivalent errors (13.8% for P. radiata ver-
sus 15.8% for the trees used in this study). Treitz et
al. (2012) studied a broad range of forest types and con-

Table 5: Numbers and percentages for mean INN from
100 simulations per plot (total = 83) and for each
INN from each simulation (total = 83*100) by differ-
ent classes of INN

Class Mean INN Individual INN

Num. Percent Num. Percent

0.85 - 0.90 4 5% 565 7%
0.80 - 0.85 9 11% 845 10%
0.75 - 0.80 13 16% 1255 15%
0.70 - 0.75 15 18% 1482 18%
0.65 - 0.70 22 27% 2102 25%
0.60 - 0.65 13 16% 1321 16%
0.55 - 0.60 6 7% 508 6%
0.50 - 0.55 0 0% 132 2%
0.45 - 0.50 1 1% 90 1%
Total 83 100% 8300 100%

ditions across Ontario and reported that rMSEs can
range from 0.76 to 4.3cm for Dq, and our results fall
well within this range.

Terrestrial LiDAR scanning (TLS) is an alternative to
ALS for estimating tree diameters. Some TLS studies
report diameter errors of less than 1cm (Henning and
Radtke, 2006; Liang et al., 2014; Olofsson and Holm-
gren, 2016; Pitkänen et al., 2019), other studies more
commonly report errors in the 1–4cm range (de Conto
et al., 2017; Maas et al., 2008; Pueschel et al., 2013;
Srinivasan, 2015). TLS remains an expensive technol-
ogy, though mobile TLS technology is quickly evolving
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Figure 2: Predicted versus observed parameters: A) quadratic mean diameter (Dq, cm); B) diameter standard
deviation (s (D)); C) shape; D) scale; E) quadratic mean height (HTq, m); F) height standard deviation (s (HT ));
G) maximum height (HTmax, m); H) λ1; I) λ2; J) trees per hectare (TPH, # ha−1); K) correlation between diameter
and height, DHcor. Solid line is the 1:1 line and the dashed line is the LOWESS smooth trend line.

as are the algorithms to detect tree stems and fit func-
tions to tree stems. However, though this technology has
great promise, complex forest stand structures are likely
to continue to pose challenges for accurate diameter and
stem profile estimation.

Because the models fitted the Femelschlag plots
marginally (Table 3), substantial differences (MB and
rMSE) between observed and predicted moments and
recovered distribution parameters for DBH and HT were
observed (Table 4). Most discrepancies between ob-
served and predicted values were associated with the big-
ger trees (Fig. 2). In general, trees with DBHs > 30cm
and/or taller than 20m were not predicted leading to
underestimation of mean DBH and HT. For some plots,
smaller trees (DBH < 10cm) and shorter trees (HT<8m)
also were not well predicted (Fig. 2). Other studies
also have observed that ALS tends to underestimate HT
(Maltamo et al., 2004) in both coniferous and deciduous
forests because many ALS pulses do not hit the accrual
tree top (Næsset and Økland, 2002) and these pulses
penetrate into the canopy before a first echo is detected

(Gaveau and Hill, 2003). Mehtätalo et al. (2007) ob-
tained accuracies for estimation of mean tree DBH and
HT on a stand level with a rMSE of 2.35cm and 1.22m,
similar to what was achieved in this study. Overall, rea-
sonable approximations of mean DBH and HT have gen-
erally been obtained using ALS data. The quality of pre-
dictions are dependent upon the quality of ground data
(Hayashi et al., 2015; Hsu et al., 2020; Yang et al., 2019).
Since large amounts of ground data are time consuming
and expensive to collect, field-measured DBH and HT
for fitting are often only available from a small number
of sample plots. Large errors can be created during the
process of extrapolation from plots to LiDAR cells with-
out adequate field measurements with sound underlying
sampling designs (Hayashi et al., 2015, 2016). Our data
represents a very complete and intensive dataset for Li-
DAR analysis (Ver Planck et al., 2018).
Despite differences in estimated and mean values of

the population and distribution parameters, the HT-
DBH copulas, overall, performed satisfactorily for many
of the stand structures encountered in the data used in
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Figure 3: Comparison of copula-based distributions (gray lines represent individual simulations) for a selected plot
from each class of INN value relative to the observed values (black dots) and distribution (black line). The interval
of INN for each class was: A) 0.45 - 0.50; B) 0.50 - 0.55; C) 0.55 - 0.60; D) 0.60 - 0.65; E) 0.65 - 0.70; F) 0.70 - 0.75;
G) 0.75 - 0.80; H) 0.80 - 0.85; and I) 0.85 – 0.90.

this study (Fig. 3 and Table 5). Approximately 50% of
the plots had copula distributions that were more identi-
cal to the field measured HT-DBH distributions as mea-
sured by the mixed two-sample goodness-of-fit (INN <
0.70; Table 5). These results were better than those ob-
tained by Arias-Rodil et al. (2018) where the predicted
diameter distributions performed very poorly (less than
40 % of their plot distributions were acceptable based
on KS tests) even though their models accounted for a
greater proportion of the variation than the models de-
veloped here.

Several plots having much higher INN values were as-
sociated with plots that had high proportions of big or
small trees, high variation in heights, and discontinu-
ous distributions (especially DBH distributions, Fig. 3).
Xu et al. (2014) encountered similar problems and devel-
oped ratio calibrations to correct LiDAR-derived heights
using field measures. Recently, Xu et al. (2019) ap-
plied empirical copulas to estimate HT-DBH relation-
ships. They divided the heights into several ranges and
obtained empirical copulas within each range. Their ap-
proach produced better fits than obtained here, but re-

lied on identification of nearest neighbors from which to
build copulas (cf., Kershaw et al., 2017; McGarrigle et
al., 2013) rather than modeling and predicting copulas
as done here. For those plots with much higher INN

values, two situations consistently were observed: pres-
ence of several tall trees and multistoried stands. In
this study we attempted to account for emergent trees
in our estimation of height distribution parameters by
using an indicator variable for their presence. This ap-
proach did not significantly (p> .05) improve our predic-
tions and was subsequently dropped. This study also did
not account for species composition. Both Hayashi et
al. (2015) and Ver Planck et al. (2018) fitted forest-type-
specific models to the Noonan data and found improve-
ments in goodness-of-fit and model predictions. Because
we used a moment-based parameter recovery approach,
we had hoped to avoid the need for recognition of dif-
ferent stand types; however, the different stand types
at Noonan, while similar in area-based estimates, have
very different DBH and HT distributions.
Many of the Femelschlag plots were not pure stands so

that both DBH and HT distributions can be multimodal,
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disjointed, or highly variable in other ways (Fig. 3). Uni-
modal distribution functions cannot adequately capture
these distributions (Liu et al., 2002). Those multimodal
distributions might have been better fitted using mixture
distributions (Liu et al., 2002) or one of the Johnson’s
translational distributions (Hafley and Schreuder, 1977).
Despite these limitations, our models did fit a majority
of the plots in this study well (Table 5). Improvement
in fits to the other plots might be accomplished by us-
ing more flexible distribution functions or by broadening
the types of LiDAR metrics to include additional mea-
sures of horizontal heterogeneity in LiDAR point clouds
(Ayrey et al., 2019). Measures of horizontal heterogene-
ity may require examining the point clouds beyond the
bounds of the relatively small plots used in this study
(accepting the errors associated with spatially extracting
beyond the plot boundaries) or increasing plot size (ac-
cepting the errors associated with reduced sample sizes).
Regardless of which approach is selected, it will be im-
portant and required to ensure that the data represent a
valid sample which covers the ranges of conditions well
over which the LiDAR-derived models are going to be
applied (Hayashi et al., 2015; Yang et al., 2019).

The use of copulas, as presented here, has potential
for wide spatial scale prediction of tree-level attributes
and represents, for the time being, a potentially more
promising approach than trying to extract individual
tree dimensions directly from point cloud attributes.
The moment-based parameter recovery approach used
here is robust since the estimation of mean tree dimen-
sions is generally easier than the direct estimation of
distribution parameters which may not have geometric
interpretation (Burk and Newbury, 1984; Gove, 2003;
Kershaw and Maguire, 1996). An additional potential
advantage of the methods developed here is that care-
ful coregistration of LiDAR point clouds and individ-
ual trees may not be required, since the emphasis is on
population distributions rather than point estimates of
individual trees. Copulas, as shown here, are more flex-
ible than traditional bivariate distributions (Schreuder
and Hafley, 1977), regression equations (MacPhee et al.,
2018), and imputation methods (MacPhee et al., 2018).
However, the results do indicate the need for adequate
sample designs that cover the full range of conditions
over which the models are applied and distribution func-
tions that are flexible enough to capture the full range
of structures being modelled. So far, the required mo-
ments of DBH and HT distributions were estimated in-
dependently from LiDAR data. Applying a compati-
ble systems approach (Yang et al., 2021) would provide
high consistency among moments and might improve the
DBH-HT copulas models.

With improved HT-DBH distributions, other tree at-
tributes such as volume or carbon content can be esti-

mated and summed to obtain improved area-based es-
timates. In addition to obtaining better quality of field
data across a wider range of field plots, terrestrial Li-
DAR scanning systems may provide additional potential
to improve individual tree estimation because these sys-
tems quickly gather more detailed information from the
understory perspective which may, in turn, prove use-
ful for improving LiDAR-derived copulas such as those
developed here. The combination of terrestrial LiDAR
systems and airborne LiDAR-based analyses such as de-
veloped in this study is a relatively unexplored approach
and holds much potential for improved inventory esti-
mates.

Acknowledgements

We are grateful to the dedicated work of the 2014 sum-
mer field crew: Mike Hutchinson, Shawn Donovan, and
Dan Kilham. Funding for this project was provided, in
part, by grants from the Natural Sciences and Engineer-
ing Research Council of Canada (Discovery Grant pro-
gram) and the New Brunswick Innovation Foundation
Research Assistantship Initiative. The first author also
thanks the University of New Brunswick for the Presi-
dent’s Doctoral Tuition Award and the Fundy Commu-
nity Foundation for their support through the Dorothy
and Kenneth Langmaid Forest Soils and Tree Growth
Scholarship.

References

Arias-Rodil, M., Diéguez-Aranda, U., Álvarez-González,
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