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NEAREST-TREE AND VARIABLE POLYGON SAMPLING

Kim Iles
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Abstract. Sampling a nearest neighbor is often presented as a Hansen-Hurwitz or Horvitz-Thompson
estimation process. This may not be the most informative viewpoint, and measuring the probability of
selection is not necessary. The measurement of the nearest object as a “depth” over the selection area can
be done by a sampling process, and the total estimated without knowing the polygon areas. The process is
unbiased, quite general, and easy to understand. It can be extended to more than just the nearest object
to a sample point and to many different polygon shapes. This paper is an extension, simplification and
generalization of an earlier paper in this journal (Iles, K. 2009. “Nearest-tree” estimations—A discussion
of their geometry, MCFNS 1(2), pp. 47–51.), but does not require a random orientation or weighting for
the direction of measurement from the tree to the polygon border.

Keywords: n-tree sampling; nearest tree; Voronoi polygons; unbiased estimates.

1 The Discussion

Most of forest sampling is about geometry, either
plane or solid geometry. Typically, the area on which
a single tree is selected gives a probability of sampling,
often put into the familiar Hansen-Hurwitz equation as
a statistical approach. The nearest-tree approach is an
example of selection proportional to a Voronoi polygon
around the tree. Forest samplers have learned long ago
that the logic of sampling is better viewed as a plot sur-
rounding a tree, rather than a tree falling inside a plot.
The chance of selection is the area of the polygon around
the tree divided by the total area.

There is a well-known and often cited publication by
Overton (1995), but the point is often missed that he
placed his paper in the “Teachers Corner” section of that
journal. His intention was to emphasize the generality
of the Hansen-Hurwitz viewpoint in statistics, where the
estimate of a population total from a single object is
always:

Total =
Object measurement

probability of object selection
.

I will use volume as an example, but the same process
applies to value, weight, carbon, or any other tree (or
object) measurement. If the random point in the area
falls into a polygon covering 1% of total tract area, the
total volume as a Hansen-Hurwitz expression is:

Total volume = (tree volume/1%) (1)

or

Totalvolume = treevolume×
[

total area

tree polygon area

]
(2)

In Equation (2) above, which is more intuitive but
less general, the term in square brackets is often called
the “Expansion Factor”. If several objects are chosen
at a sample point, the estimates for each of the objects
can be combined, as in the Horvitz-Thompson approach
for a cluster of sampled objects with different selection
probabilities. The problem in practical terms is to make
any measurements involved with a reasonable level of ef-
fort. The tree volume is straightforward, but getting the
polygon area is not trivial in the field, except for those
plots that are circular or of fixed area. This difficulty
can be avoided.
I would like to suggest the following view of the sit-

uation. An area has polygons upon it. In the simplest
case, the polygons tesselate the area, so the total poly-
gon area is therefore known beforehand. If not, a simple
count of the polygons selected will determine the rela-
tive area of their coverage. An example of this might be
counting tree crowns on an aerial photo. If the average
count of random or systematic points that fall into one
or more polygons is 0.73 polygons per point, it means
that the total area of the polygons could be estimated
as 73% of the total area. If the polygons overlap, giving
an average count of 3.8 on the sample points, the esti-
mation of the total of polygon areas is 380% of the total
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surface area. The shape and size of the polygons are of
no consequence in this estimate. Foresters perform such
counts frequently with both fixed and variable plot sam-
pling, and less frequently with irregular polygons - such
as tree crowns or vegetation patches.

In the simplest case, the total of polygon areas is per-
fectly known as the area of the tract of land involved.
For the moment, let us assume that this is the case.
What we really want, of course is the total of some prop-
erty of the trees, with volume as one example. Visualize
the volume of the tree as a solid made of ice, perhaps one
with the same shape as the tree itself. Now let it melt,
and fill the area of each polygon. The polygons have
different sizes and tree volumes, and therefore have dif-
ferent depths to which their polygons would be “filled”
across the land area. It is obvious that the total volume
of the tract is simply the average depth of the water
times the area of the tract, much like calculating the
volume of a lake, the volume of a pile of wood chips, or
an ore body sampled with vertical probes. We simply
have to determine this average “depth” by sampling.

The area of the polygon is measurable, but not triv-
ial. It may be easier if the border is made of straight
lines between known points, as land surveyors do all the
time. GIS systems can do this easily as well. The GIS
can determine the polygons, sum them, select some to
sample, and help you find those polygons in the field.
These polygons do not need to be “correct” in some
way, you simply need the polygon areas - and perhaps
some border locations on the ground during the field
measurement phase.

In cases without computer assistance, you will choose
a random point, and need the area for the polygon in-
volved with that decision. The polygon area is difficult
to measure in the field, but we do not need to do that.
We need the average volume/polygon area, and we can
sample for that.

The polygons in Figure 1 surround trees, and also pro-

Figure 1: Polygons divided into “gutters”.

vide a fixed reference point inside the polygon. We know
which Voronoi polygon we are in, based on the clos-
est tree to a random point. Imagine that the polygon
around the tree is now entirely divided into walled trian-
gular “gutters” that will collect the tree volume when it
melts. Now we have a population of vanishingly thin tri-
angular “gutters” that will fill to different depths, with
sides of different radii “Rg” in each case. The aver-
age of all those depths times the total tract area will
now provide the average volume of the tract. The gut-
ter areas are chosen proportional to their areas by the
random point selected for sampling, so a simple average
can be taken. A useful view of the situation is to simply
concentrate on the triangles, and ignore the fact that
they happen to also combine to form Voronoi polygons
around trees.
You are as sure of the total volume as you are of the

average depth inside the triangles, and you can sample
for this value. The statistics are trivial. How deep is
the horizontal component inside each triangle? That is
a simple computation:

Depth =
Tree V olume

πR2
g

(3)

To determine the distance Rg, simply move outward
from the sample point, along a line connected to the
tree, and find where the distance to the sample tree is
equal to the distance to the next closest tree along that
line. This finds the boundary that is a bisector between
the trees and is on the border of the Voronoi polygon
around the sampled tree. If this proves inexact in the
field, you can also measure 3 distances to calculate the
distance to the bisector forming the polygon edge, as
in Figure 2 from an EXCEL worksheet using standard
algebra for the known sides of a triangle. The author
would be happy to supply a copy of this spreadsheet. It
is also possible to get the Rg distances approximately in
most cases, then correct them by a more exact estimate
on a subsample basis, as we often do in forest sampling.
The distance desired in the example is 20.85m. The dis-
tance is not the minimum to the polygon edge, but the
length to the border along the line connecting the sam-
ple point and the nearest tree. An equivalent process
is the measurement we have traditionally done in Vari-
able Plot Sampling. Tree volumes, or other values, are
divided by tree basal area (or more generally, by tree
plot area). This form of “depth” on the sample base is
typically called the “VBAR”, or “Volume to Basal Area
Ratio”. In that case, of course, the total area of tree
circles inside the tract is an estimate as well, and the
statistics are treated as a double sample, or frequently
as a product sample where the estimated total tree basal
area is multiplied by the estimated average VBAR. The
tree polygon area and the average VBAR can be esti-
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Figure 2: Calculating the distance from a tree to the polygon edge.

mated by separate samples, but are usually done at the
same sample points, and the correlation is virtually zero
with any stratification based on tree heights. The VBAR
can be subsampled with only some of the trees at each
sample point, of course. In essence, this is the case with
gutter subsamples as well.

The units of the depth ratio would be something like
“cubic metres per square metre of tree polygon area”.
Any other measurement is handled the same way, and
might be dollars or tons per square metre. Numbers
of trees are handled simply by dividing “one tree” as
a measurement by the area involved for the polygon
around the tree – giving “trees/square metre” for the
total polygon area of the tract. Species and other nom-
inal variables are handled the same way.

Ecologists have long attempted to estimate tree num-
bers from nearest tree distances, adding some additional
distance because they needed something approaching
the distance Rg, as noted above, but did not seem to
have noticed this simple way of obtaining the correct
distance; or perhaps I have simply been unable to find
such a reference. I believe that the reason this eluded
many of them was that they typically visualize the dis-
tance around a sample point as a circular plot – rather
than approximating the area of the polygon around the
tree, although they sometimes did mention the selection
area of the tree as a Voronoi polygon. Assuming ran-
dom distributions to avoid the previous sampling biases
or to adjust the distance measurements seems a particu-
larly dismal way to approach a solution for the bias, and
more complicated distributions have done little to solve
the problem either.

An unbiased solution for estimates selected from the
nearest tree is just as simple as getting the distance to

the polygon boundary. This generalizes to sampling us-
ing the distance to the boundary of any polygon select-
ing the object for sampling, not just Voronoi polygons.
Fixed and Variable plots are a special case of this situ-
ation. One might consider this process to be “Variable
Polygon Sampling” for any measurement inside a poly-
gon of arbitrary shape. Simple shapes, not involving
“gaps” along a line from a reference point, are much
preferable in this approach, but not absolutely required.
How the polygon is constructed is of no interest in terms
of unbiasedness, though it might affect the efficiency or
ease of sampling.

Publications such as Fraser (1972) chose to connect
the measured variable to a single triangle connected to
each tree, presumably because it was easier in the field
to measure the area of that triangle than a Voronoi poly-
gon. I would agree. My own view, however, is that this is
less flexible in weighting the triangles by various means,
and I have found the triangles a bit difficult to reliably
locate and associate with the correct tree in the field.
The geometric viewpoint of the measured variable as a
“depth” over these triangles is virtually the same.

2 Polygons by computer applications

There is an alternative to determining polygon area in
the field. With automated methods of scanning forest
stands, the polygons surrounding trees can be automat-
ically generated. Software is currently able to do this,
and the key point is not that it involves LiDAR, but
the fact that it is done automatically by computer algo-
rithms. Other forms of remote sensing might be more ef-
ficient. The fact that you can deliver the total of polygon
areas, choose the samples, and specify sample polygon
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areas reduces the field effort. Sampling can be done ran-
domly, or perhaps much more efficiently as a systematic
sample. The only additional step needed is to get the
tree measurement involved – requiring that the location
can actually be found on the ground. A more efficient
method might be to choose clusters of polygons, espe-
cially if these are related to easily located outer polygon
boundaries on the ground like roads or openings. It is
not apparent to me that tree polygons can currently be
reliably located on the ground – other than sparce trees
in some forest types. It is, however, apparent to me that
it will be possible to do in the future.

Initial rough estimates of the results would also allow
more efficient systematic sampling, and all these ben-
efits are available before going to the field. The GIS
system can total the polygon areas, so the entire area
need not be tessellated. Unproductive ground can be
stratified out of the process, and better polygon areas
might be created with alternative algorithms and esti-
mated tree values. Any rough tree volume estimates do
not need to be unbiased, since the estimate will be cor-
rected by ground sampling. The book by Okabe (1992,
page 128) discusses alternative computer methods for
polygon constructions using weighting. This approach
does not assume that there is only a single tree in these
polygons – just that whatever is inside the polygon can
be identified and measured. Sometimes you can ade-
quately assign simple variables without field work.

In some instances, the volume inside the polygon
might be zero. A characteristic that might be measured
in the polygon is assumed to be associated with the “cen-
tral point”, which would normally be the center of a tree
stem – but not necessarily. You could use 10cm from the
North side of each tree bole, for instance, which could be
more precisely located on the ground. The total poly-
gon area would also include undetected vertical stems
or fallen trees. The computer can also specify the ap-
proximate distance to the edge of the polygons from the
sample tree in various directions to facilitate work in the
field, but that would seldom be necessary.

3 Sampling Tree polygons that over-
lap

Suppose we want to measure the values of the 3 clos-
est trees to any sample point. Around the border of the
nearest (1st) tree polygon there is a string of small poly-
gons (which I would call “shards”) that surround that
initial polygon and identify that tree as the 2nd nearest
tree. This forms a larger outer boundary for a contin-
uous polygon where that tree is either the 1st or 2nd

tree. Likewise, an additional “necklace of shards” can
be added to that border to identify the polygon area
where the tree is the 1st, 2nd or 3d tree that would be

selected by random sample points, as shown in Figure 3.

Figure 3: Finding the perimeter of the 3d level polygon.

The surrounding shard necklaces of individual trees
on the tract intersect (at the nodes) without overlap-
ping (Figure 4), and they tesselate the area. They are

Figure 4: intersecting shard necklaces.

interesting geometrically. They might also provide an
original type of jigsaw puzzle or stained-glass window,
but in this example they just help to specify the 3 trees
involved, and determine the outside boundary of each
overlapping tree polygon. This graphic is only an exam-
ple for illustration, rather than a correct rendering. I be-
lieve that Okabe might refer to these as “order-3 Voronoi
polygons” (page 154, and well illustrated in that text).
At any sample point, 3 polygons overlap, as shown

in Figure 5, and we would need to estimate the Vol-
ume/area relationship for each of them (at their full
size). We therefore need the distance to the edge of each
of the 3 tree polygons. These are the border points we
want to identify. We simply retreat along a line through
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Figure 5: Overlapping polygons that choose 3 trees.

the random sample point to each of the trees, until we
reach the border where each tree would change to the
4th most distant tree. If the polygon areas have already
been determined by a computer, we only need to locate
and measure the items in the polygons of known area,
and we have a single average “depth” for each polygon.

These polygon necklaces completely tesselate the land
base at each level. Since every point has one and only
one second-nearest tree, for instance, it is clear that the
second level shards tessellate the land base, and there-
fore have the same combined area as the central poly-
gons that they surround (since they have the same total
area and number of trees). They do not, however, indi-
vidually have the same area as their surrounded center
polygon. The combined areas of the center polygons
plus their 2nd level shard necklaces obviously overlap
and form a total area 2X the land base. The same holds
true for other necklaces of shards, so the 3d level poly-
gons overlap and cover the area 3 times, or 300% of the
land base.

Distance from tree to each polygon border is shown.

This approach is one way to choose trees in clusters,
and for which we can apply the Horvitz-Thompson ap-
proach to the trees, each of which has a polygon where
it would be one of 3 trees closest to a particular sample
point. For each tree (if the computer does not provide
that area) we deduce the depth along the gutter reach-
ing out from each tree. In this case, there will be 3 trees
with gutters that overlap each other as they cross the
sample point. Adding the 3 depths will produce the es-
timate that is needed. The sum of all 3 depths times the
area of the tract gives an estimate of total volume. The
same number is produced by the average gutter depth
times 3X the tract area. This is virtually what is done
with Variable Plot Sampling, when the estimating equa-
tion uses the average of the VBAR measurements for a

variable number of trees that are “in” with the angle
gauge. In this application we always have 3 trees, and
the advantage is that we know the sum of all the areas in-
volved, where in Variable Plot Sampling the total basal
area is only estimated. Subsampling is also obviously
possible.

You could also use the simple Voronoi polygons, and
expand their dimensions to form a variable number of
overlapping polygons. This is simpler to do by com-
puter, and the process would give automatic tree selec-
tion at sample points with known polygon areas. The
process is very general.

It has not escaped the author that this process might
be extended to higher dimensions and nearest-neighbor
methods, but that is beyond the scope of this current pa-
per. It is also worth mentioning, that when more than
one polygon is involved on a plane, it might be an ad-
vantage to use distance-variable estimators (Iles, 2007),
rather than a simple “flat” depth measurement. This
might be visualized as the tree melting as wax might,
giving different depths inside the polygon or gutter. The
depth estimates might then compensate to some extent
whenever objects avoid one another, as they often do in
nature. For repeated measurements such as permanent
sample points, this approach is more than 40 years old,
and has been used to lower variability and produce “con-
sistency” over time for surviving trees to provide less
variable forest growth estimates (Iles, 1979 and 1989;
Flewelling, 1981; Therien, 2011; McTague, 2013), but
sudden changes due to mortality have remained a prob-
lem.

The realignment of polygon size and shape from mor-
tality will mitigate the affect of mortality on live tree
volume caused when trees are suddenly removed from
the population of live trees. With mortality, a new live
tree and its adjusted polygon will replace the one that
died, and the bordering tree polygons would also adjust
themselves. Volume growth over the point would often
still change slowly for permanent variable plots on the
polygons of surviving trees, although a bit more than
previous methods. When dying trees are replaced by an-
other surviving tree and polygon, the total live volume
and growth result should be more stable. Simulations
with actual stand maps would provide an insight into
this. My own view is that the process would be bet-
ter done with a set of systematic points in a line. This
would allow the maximum number of readjustments on
tree polygons when relatively sparse mortality occurs,
because of the larger number of bordering polygons for
the points along the line.
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4 Extensions to kth-nearest tree
methods

I will use a 6-tree cluster as an example. In this case,
the 6 nearest trees to a sample point are chosen. You
estimate the Rg distance of only the 6th nearest tree
polygon. That tree is chosen when you fall into any
of the 6th level necklace of shards surrounding the tree.
All 6 trees are now added for volume, and divided into
that single polygon area. This is usually presented as a
fixed plot using the distance to the 6th tree as a kind of
plot radius. Since you are inside the 6th shard, you are
already close to the border distance needed. Historically,
a small distance is typically added to the initial distance
from the sample plot to the 6th tree, and that distance
should be the distance from where the sample point fell
in the shard to the outer edge of the polygon bordering
the 6th tree. In this method, only the distance to the 6th

tree is used. Even when the correct distance Rg is used,
it is clear from counter-examples that this method using
only the polygon of the 6th tree would be biased, and
simulations seem to verify this. On the other hand, if
the bias is shown to be small in widely consistent actual
forest types, should we care that much? The process
is less difficult than specifying all the polygon estimates
and distances, although it is prone to edge-effect biases.

5 Practical applications

Nearest-tree, or n-nearest trees approaches are not a
problem because of biases. One could specify a handful
of unbiased methods easily, or perhaps show that any un-
corrected bias was of no practical consequence, but that
is not the issue. The real question is whether the method
is a good alternative in comparison to other available
methods. Is it better than stopping at sample points,
quickly counting the trees with an angle gauge, perhaps
measuring one or two trees and moving on? If not, how
much should we dwell on a less efficient method of sam-
pling? Are there situations where automation would re-
lieve the mechanical issues of selection and measurement
in specific situations and make this process desirable?

Clever field application of geometry ideas such as tree
selection with angle gauges or clever probability determi-
nations such as with Randomized Branch Sampling and
Adaptive Cluster Sampling have often been the key to
practical advances. Certainly, these can all be reformu-
lated as Hansen-Hurwitz or Horvitz-Thompson algebra
– but the application of them has been made practi-
cal by previously unimagined field procedures. Perhaps
this viewpoint of the process of sampling inside a chosen
polygon might also be valuable.
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