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SOLUTIONS TO THE BASE-AGE VARIANT MODELS

Chris J. Cieszewski
University of Georgia, Athens, GA 30602 USA

Abstract. Self-referencing models predict the value of Y at age t as a function of both t and a snapshot
observation of Y = Y0 at t = t0, which implicitly integrates the entire environment affecting the development
of Y . Common examples of such models are site-dependent height over age models, or site index models,
hereafter referred to as site models. These models are often developed using pooled cross-sectional and
longitudinal data and describe families of multiple curve shapes.

It is advantageous to formulate these models as algebraic difference equations, which can be referred to as
“dynamic equations,” with their reference variables describing the environment or site quality. For example,
in height modeling, site models predict height as a function of age and a height at a base-age known as the
site index.

The base-age specific modeling ideology suggests that curves generated by these models are unique to a
particular selection of base-age, at which the input data or site index is defined during the estimation
of model parameters. Base-age variant models are designed to capture some of the patterns of curves
corresponding to different base-ages through a single formula. The curves generated by this approach vary
with base-ages and with various methods in which the models can be applied.

However, the available base-age variant models have been limited in their usage to avoid inconsistent
predictions and cannot be considered equations in the algebraic sense since they can show that 1 = 0. To
address this issue, I present a mathematical approach that leads to the derivation of a new type of proper
base-age invariant equations, which can be applied in various alternative ways for the same purpose as the
base-age variant models, but without creating mathematical inconsistencies.

Keywords: Site models; site index modeling; GADA models; self-referencing functions; base-age
invariant; base-age variant; path-invariant.

1 Introduction

Historically, guide curve methods (e.g., Schu-
macher, 1939) were used to develop simplistic site equa-
tions based on temporary plot data. However, these
methods are no longer considered viable for contempo-
rary forestry management tools. In more recent years,
statistical approaches have been used to develop site
models as self-referencing equations (Northway, 1985)
with parameters estimated on stem analysis or perma-
nent sample plot data (Biging, 1985). These approaches
typically involve fitting multiple curves with a single
mathematical equation, where each curve is identified
by a curve-specific parameter or another identifier, such
as a fitted data point. Parameter estimation methods
can be broadly categorized into two groups: traditional
base-age specific methods (e.g., Heger, 1973; Curtis et

al., 1974) and more recent base-age invariant methods
(Bailey and Clutter, 1974; Garcia, 1983).

Base-age specific methods assume that each curve is
identified by a specific data point corresponding to an
arbitrary base-age, and that the curves are fit with mul-
tiple passes through all data points, possibly with an ab-
solute or relative offset. Base-ages are usually selected
based on convention and have no direct relevance to the
ages subsequently used in model implementation. Con-
versely, base-age invariant (Bailey and Clutter, 1974)
methods assume that the set of curves is fitted to data
without restricting any individual curve to pass through
any specific point.

Base-age specific parameter estimates depend on the
selection of base-ages, whereas base-age invariant meth-
ods are unaffected by such selections. Advocates of base-
age specific models argue that unique curve shapes cor-
responding to different base-ages result from a special-
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ization of the model’s predictions for use with the given
base-age. However, since site models are used with all
possible base-ages in practice, the argument for the need
of models specialized in any specific base-ages is not ra-
tional.

Base-age variant models aim to capture various base-
age specific curve shapes for all possible base-ages into a
single model form that changes smoothly across all pos-
sible base-ages. Examples of such models include those
proposed by Goelz and Burk (1992), Huang (1994a,
1994b), Payandeh and Wang (1994, 1995), and Wang
and Payandeh (1994, 1995, 1996). However, these mod-
els have some serious limitations that are detrimental
to many practical applications (Bailey and Cieszewski,
2000). Notwithstanding the claims of their authors,
none of these models is base-age invariant due to the
flawed method of their development and ill-conditioned
mathematical structures.

In this context, I will discuss the specific aspects of
the intention behind base-age variant models and pro-
pose an improved mathematical conceptualization that
will result in a new type of truly base-age invariant mod-
els serving the same purpose. By addressing the flawed
approach of these previous models, we can create a new
approach that will be more accurate and better suited
to serve the same intention. The proposed improvement
will address the limitations of existing base-age variant
models and provide a new approach to base-age invariant
models that accurately captures base-age specific curve
shapes while remaining mathematically sound.

2 Potential uses of base-age specific
and base-age variant models

Assuming that the desired outcome is to reflect unique
properties of a specific base-age used in model fitting,
practitioners may want to have base-age specific esti-
mates for the parameters. However, even if the result-
ing model is only applied to stands at the given base-age,
practitioners may still want to use the model in alter-
native ways. For example, they may want to predict
heights at harvest age directly from available measure-
ments, or simulate height development in annual or pe-
riodic iterations within a larger modeling framework.

Traditional base-age specific models are used in var-
ious ways. However, the base-age specific aspect is en-
coded in the parameter estimates’ values and is only
relevant to the presumed base-age of the field measure-
ments. The arbitrarily selected base-age of the model
remains unchanged in the various model uses, and it
does not interfere with the model’s use of intermediate
calculations or yearly iterations to compute height pre-
dictions.

In contrast, existing base-age variant models contain
variable base-ages that determine the definition of vari-
ous curve shapes corresponding to different base-age val-
ues. These base-ages are also the reference points for
the models and govern the curve shapes through the ini-
tial input. Therefore, predicting height at a chosen age,
given a measured reference height at a known age, would
be appropriate for these models. However, using a pre-
dicted height as a new reference height to predict any
other height at some other age is inappropriate because
it is not based on a measurement but on the model’s in-
termediate calculations. Similarly, using base-age vari-
ant models to determine values of the reference height
or site index that corresponds to a given curve using
the predicted height would also be inappropriate. In
contrast, traditional algebraic difference equations and
all base-age invariant models solvable for site index are
suitable for this purpose.
In short, the base-age variant models are intended to

integrate multiple site models with base-age specific pa-
rameters into a single functional form, smoothing the
differences between models for different base-ages. How-
ever, the dependence of curve shapes on base-age applies
only to field measurements and not to the model’s own
predictions. Thus, the base-age dependence is not rele-
vant to the various ways in which the equation might be
used in forest management.
The original base-age variant models (as proposed by

Goelz and Burk, 1992, and others) were designed to have
a general form of:

Y ← f(t, t0, Y0) (1)

In order to better understand the base-age variant
models, I define internal equation base-ages and external
base-ages. Internal equation base-ages refer to the ini-
tial conditions of implicit algebraic difference equations
used in the models, while external base-ages are the sta-
tistical bases for the base-age specific parameter values.
This distinction is important because it suggests that
predictions using the same model and initial conditions,
but with different iteration lengths or time scales, will be
the same regardless of the base-age used for the statisti-
cal parameter values. For example, a prediction for age
150 using measurements at base-age 50 and yearly itera-
tions would be the same as a prediction at age 150 using
the same initial measurement and 10-year iterations.
With this distinction in mind, a new type of a base-age

invariant equation can be specified as:

Y = f(t, t0, Y0,Z) (2)

where, Y is the response variable, t is the independent
variable, t0 and Y0 are the equation initial conditions,
and Z represents the external base-age that governs the
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different shapes of base-age specific curves. By explic-
itly including the external base-age in the equation, it
becomes clearer that the new models are dependent on
the statistical base-age for their parameter values, but
that the internal equation base-age is not relevant to the
model’s predictions for different time scales or iteration
lengths; and therefore, the model is a base-age invariant
equation with base-age variant parameter estimates.

Overall, understanding the distinction between inter-
nal and external base-ages is key to understanding the
behavior of base-age invariant equations with base-age
variant parameters and how they can be used in prac-
tical implementations. By specifying the equation in
terms of external base-age, it becomes clearer how the
statistical base-age influences the shape of the curves,
and how the models can be used flexibly for different
prediction scenarios.

In this context, t0 and Y0 represent the reference
points of the algebraic difference equation, while Z de-
notes the base-ages of measurements used in model fit-
ting and its applications. As an illustration, let’s con-
sider the Chapman Richards (Richards 1959) model:

Y(t) = α
(
1− e−βt

)γ
(3)

Goelz and Burk (1992) developed a base-age variant
model based on eq. (3) that can be defined accurately
as a one-way assignment, given by:

Y2 ← Y1

(
1− e−α (Y1/t1)

βtγ1 t2

1− e−α (Y1/t1)
βtγ1 t1

)δ

(4)

where, tn and Yn denote an arbitrary age and the height
at age tn, respectively, while α, β, γ and δ are unique
parameters for this equation.

The symbol← indicates a one-way assignment, mean-
ing that the model (4) is not a mathematical equation
in the traditional sense and can lead to inconsistencies
if used as such.

This model is designed for direct predictions of height
at a specific age, given a height measurement at another
age. However, it cannot be used for iterative simulations
of height growth, or any other purposes, as the produced
predictions will be inconsistent. Therefore, those who
subscribe to the base-age variant ideology need to im-
prove the utility of such models to enable their use for
other purposes, such as incremental predictions in peri-
odic iterations. In the following section, I demonstrate
how to accomplish it.

3 The proposed approach to base-age
invariant modeling of the multi-
base-age specific responses

Cieszewski and Bailey (2000) present a highly flexi-
ble approach for formulating advanced algebraic differ-

ence equations, or dynamic equations, that can define
models with various types of polymorphism and variable
asymptotes. These equations allow for the generation of
various curve shapes and are mathematically base-age
invariant, meaning that their curves do not change with
different selections of the equation’s initial conditions.
As a result, models derived with this approach will al-
ways generate consistent predictions whether used for
direct, one-step computations or iterative computations
in any yearly or periodic iterations.

It is important to note that the parameter estimates
of the dynamic site equation derived with the gener-
alized algebraic difference approach can have base-age
specific parameter estimates if fitted inappropriately, as
the statistical properties of model parameters depend on
the data analysis, not on the equation form. However,
they can be used as base-age specific models, as well
as dynamic equations. The estimates of parameters are
base-age specific if the curves are forced to pass through
points determined by the actual data at given base-ages
during the fitting process. This can be imposed on any
fitting of site models regardless of the equations used.
For a single base-age, the base-age specific parameter
estimates will have particular values that are charac-
teristic of that base-age. Additionally, the parameter
estimates of dynamic equations can be multi-base-age
specific (e.g., Clutter et al., 1983, Borders et al., 1988)
if the curves are forced through data points at multiple
base-ages. In either of these cases, the base-age specific
character of the model would be reflected in the param-
eter estimate values.

To reflect multiple base-ages in the parameter esti-
mates of dynamic equations, modifying functions of the
base-ages used in multi-base-age specific fitting can be
used to alter the parameters. In such a case, the base-age
specific responses of the parameters would be explicit
and independent of the equation’s initial conditions.

To achieve this, one must explicitly identify the mea-
surements’ base-age as it influences the value of model
parameters in the explicit site equation during the model
conceptualization stage before deriving the final dy-
namic equation. The external base-ages must then be
used to define parameter modifying functions that ex-
plicitly define the differences in model parameter esti-
mates for different base-ages. For example, one can as-
sume that the considered base model is eq.(3) and its
responses to different base-ages are similar to eq.(4).

To derive equations using the generalized algebraic
difference approach, one can define an unobservable vari-
able X denoting site quality and an explicit measure-
ment base-age Z used to define the base-age specific
changes in the model parameters. Then, using these
new explicit variables, an explicit site model defining
height yield as a function of site quality X and age t,
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and the parameter responses as functions of the mea-
surements’ base-age Z can be formulated. Such an ex-
plicit site model is then solved for X and reformulated to
the appropriate implicit dynamic equation using an ini-
tial condition solution for X to replace all its occurrences
in the original explicit site equation. In such a scenario,
the variable Z remains explicit in the site model and
can be freely set to any arbitrary values. During base-
age specific model fitting, it should always be set to the
values of the relevant base-ages. On the other hand, dur-
ing model implementation, this variable should always
be set to the values of base-ages of the relevant field
measurements. These measurements are those used to
force the site curves through their values and should be
held constant throughout all computations relevant to
this field measurement, changing only for another field
measurement restricting another site curve.

For instance, assuming that the base model responses
resemble equation (4), one can formulate the following
theories related to equation (3):

1. The maximum yield (α) in equation (3) can be the-
orized as proportional to a power transform of the
site quality X , i.e., α ∝ X 1/γ .

2. The slope parameter β in equation (3) that influ-
ences polymorphism can be assumed to be propor-
tional to site quality X , i.e., β ∝ ϕX .

3. The slope parameter β in equation (3) can be pro-
portional to a power transform of the statistically
measured base-ages Z, i.e., β ∝ Zδ.

By incorporating these relationships into equation (3),
the resulting site equation, similar in assumptions to
equation (4), takes the following form:

Y(t,X ,Z) = X 1/γ
(
1− e−ζ Zδt+ln(ϕX )

)1/γ
(5)

where:

- Z is the explicit statistical measurement of the base-
age;

- X is an unobservable variable that describes theoret-
ical growth intensity or the cross-sectional theoret-
ical explicit variable;

- t is the longitudinal variable such as age or its trans-
formation;

- Y is the response variable of interest such as height,
diameter, basal area, or volume; and

- all parameters are specific to equation (5) and the
expressions derived from this equation.

Next, since X is an unobservable variable that cannot
be measured, it is subsequently replaced by its initial
condition solution to the above equation:

X = eζ Zδt

(
1±

√
1− 4ϕ e−ζ ZδtY γ

)
/(2ϕ) (6)

= eζ Zδt0

(
1±

√
1− 4ϕ e−ζ Zδt0Y0

γ

)
/(2ϕ)

and the resulting dynamic equation can be expressed as:

Y(t,t0,Y0,Z) =
(
(1 +R)

(
eζ Zδt0 − eζ Zδ(2 t0−t)

)
/(2ϕ)+

+ eζ Zδ(t0−t)Y0
γ
)1/γ

(7)

In equation (6), the first line gives the general for-
mula for X , and the second line gives the formula when
the initial conditions are specified at t = t0 and Y = Y0.
Equation (7) gives the base-age invariant dynamic equa-
tion, where t is the longitudinal variable (e.g., age), t0
is the initial value of t, Y0 is the initial value of the re-
sponse variable of interest (e.g., height, diameter, basal
area, or volume), and Z can be the explicit statistical
measurement’s base-age used in the model fitting, which
can capture the multi-base-age specific responses of the
model, as intended in the original base-age variant mod-
els.
As previously stated, Z is an independent variable

used in the regression analysis to describe the base ages
of the statistical measurements, and in the model appli-
cations to identify different base-age specific responses.
Additionally, t0 represents the age corresponding to Y0.
It is the equation’s internal base-age, or initial condition.
The following equations hold:

R =

√
1− 4ϕ e−ζ Zδt0Y0

γ

or:

Y(t,t0,Y0,Z) =
((

1 +
√

1− 2Y0
γ/R

)(
R−R(2−t/t0)

)
+

+ 2ϕR(1−t/t0)Y γ
0

)1/γ
(8)

where: R = 0.5eζ Zδt0/ϕ.

4 Discussion

During base-age dependent regression analysis, the
values of Z and t0 are always the same because they
are assigned different values directly from the data, i.e.,
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measurements. However, in model applications, the val-
ues of Z and t0 are not always the same. In par-
ticular, the values of Z and t0 are the same only at
the initial measurement input into the model. If the
model is iteratively used, the value of Z remains un-
changed until another measurement input, while the val-
ues of t0 and Y0 can change many times with no issues
with the base-age invariant equation. When derived
through the generalized algebraic difference approach
(Cieszewski and Bailey, 2000), the new base-age invari-
ant models with parameter modifying functions of an ex-
ternal variable, such as fitting data base-ages, are proper
well-conditioned algebraic difference equations capable
to represent multiple patterns of growth series.

The truly base-age invariant equations derived using
the proposed approach, with the general form given in
Eq.(2), are expected to be more useful than the origi-
nal base-age variant models of the type given in Eq.(1).
The primary advantages of Eq.(7) or Eq.(8) over models
similar to Eq. (4) are outlined below:

First, the proposed base-age invariant equation is
mathematically sound from a fundamental point of
view and cannot lead to illogical conclusions, such
as 1 = 0, yet it fully satisfies the statistical objec-
tives of the base-age variant models, such as Goelz
and Burk (1992).

Second, for any given value of Z held constant, the
equation is invariant with respect to t0 selections
and satisfies all the properties of a proper dynamic
equation.

Third, the equation can be used in a variety of ways,
such as yearly or periodic iterative simulations,
which can be useful for implementing it within
larger modeling frameworks.

Fourth, the equation is derived through explicit formu-
lation of the theoretical basis of the growth dynam-
ics and statistical objectives.

Fifth, the equation explicitly separates the statistical
effects of the measurement base-ages, i.e., the ef-
fects of the stochastic predictive variables, from the
equation’s internal structure as entangled in its im-
plicit definition. This allows for explicit separation
of individual base-age specific sub-models relating
to different base-ages, as well as opening new op-
portunities in more intricate and explicit statistical
analysis of the effects of stochastic predictive vari-
ables.

The new type of base-age invariant equation derived
above is a model that can vary curve shapes for differ-
ent fitting base-ages of the applied measurements and is

just a special case of a more general concept of curve-
variant models, which unlike the base-age variant models
may have some real use for modeling changing growth
patterns according to different environmental factors.
Many such factors may affect the growth trajectories
being modeled, such as elevation, geographical location,
or soil conditions (e.g., Kiviste 1997 and 1998), different
ecological sites (e.g., Monserud 1984), base height for
age definition (e.g., Cieszewski 1994), crowding and self-
thinning (e.g., Cieszewski and Bella 1993), and density
or mortality (e.g., Tait et al., 1988) and other interac-
tions between different variables.

In summary, the base-age specific parameters of site
models are affected by different selections of base-ages,
but this dependence is relevant only to the measure-
ments used in the model either during its fitting or dur-
ing its applications. It is not relevant to any use of inter-
mediate computations within the equation. For exam-
ple, if a dynamic equation is used with base-age specific
regression analysis, the resulting model parameters are
base-age specific, but the equation on which the model
is based can still be base-age invariant. The resulting
model can be specific to any given base-age due to the
methodology chosen for the data analysis and not due
to an erroneous formulation. Its predictions may always
be consistent, whether they are computed directly from
one age to another or they are computed in yearly or
periodic iterations or in any other way. Moreover, the
applied equation should always preserve equality. These
are the benefits of the approach presented here.

5 Conclusion

The study’s main conclusion is that proper mathemat-
ical procedures can be used to derive genuine base-age
invariant models with explicitly varying growth trajec-
tories in a similar manner as the base-age variant models
are intended to do, but without the pitfalls of the latter.
Such models can also be useful for modeling the impact
of external environmental variables, such as elevation
or climate, on inherent growth and yield patterns. To
achieve this, it is recommended to express these mod-
els as proper base-age invariant mathematical equations
with an explicit external variable (e.g., it could be the
base-ages of the data used in multi-base-age specific fit-
ting) modifying the model parameters for its different
values.

The ill-conditioned base-age variant models proposed
by their pioneers should be avoided as they can hinder
the fields of biometrics and growth and yield sciences by
proliferating confusion and misrepresentation of model
properties. Instead, it is recommended to rely on prop-
erly derived and well-behaved mathematical equations
that are base-age invariant, and which can achieve the
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same results as the base-age variant models without any
of their negative pitfalls.

For all scientific or operational implementations, it is
highly recommended to use in self-referencing modeling
formally derived, well-behaved, base-age invariant math-
ematical equations. To derive such equations one can use
any GADA or UTADA (Cieszewski 2021) model (e.g.,
Cieszewski, 2001, 2002, 2003, Cieszewski et al., 2007)
and add to it parameter modifying functions of exter-
nal variables, including in possibilities those of fitting
base-ages.

Disclaimer

With more than 40 years of experience and a keen in-
terest in growth and yield modeling, particularly in self-
referencing functions, I believe that the ideology behind
the base-age variant models is flawed and not suitable
for forest management. The proliferation of these mod-
els, as introduced by their originators, is causing con-
fusion about terminology and model functionality, and
promoting mathematically incorrect methods that pro-
duce ill-conditioned pseudo-equations, which are neither
practically useful nor theoretically correct (i.e., can lead
to 1 = 0), in addition to the fact that base-age specific
parameter estimates do not capture any useful statisti-
cal information (Strub and Cieszewski, 2006), and only
the base-age invariant model fitting is truly suitable for
self-referencing functions (Cieszewski and Strub, 2018).

To address these issues, I presented a way of devel-
oping new type of base-age invariant equations that are
mathematically and logically sound, while still achiev-
ing the intended purpose of the base-age variant mod-
els. By using proper mathematical equations, I believe
we can avoid violating mathematical laws, logical rules,
and baseless claims of alleged desirable model properties.

In short, my goal is to offer a solution to the problems
inherent in the base-age variant model ideology, and to
provide an example of a new and improved approach
to growth and yield modeling that is based on sound
mathematical principles and logical reasoning, and yet
can be used for the same purpose of modeling the im-
pacts of multi-base-age specific parameter estimations
on predictions of varying biased growth trajectories.
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