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SCHEDULE FUEL TREATMENTS TO FRAGMENT HIGH FIRE
HAZARD FUEL PATCHES
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Abstract. Fuel treatment is an important component of wildland fire management. This research revised
a mathematical programming model to schedule fuel treatments to fragment fuel patches with high fire
intensity hazard. It differs from many previous fuel treatment allocation models that design treatment
layouts based on explicitly modeling specific fires’ spread within predefined durations. This approach
does not rely on the assumption that we can accurately predict future fires conditions. Scheduling fuel
treatments to fragment high fire hazard fuel patches has similar effects as scheduling fuel treatments
to control fires with long durations. Fuel treatments aimed directly at patch management could effec-
tively lower the risk of future fires that may spread along various directions and with different spread
speeds and durations. Tests also suggested that fuel treatment layouts designed to control fires with
shorter durations might not perform well when the actual fire duration is much longer. This research pre-
sented a new and practical approach in fragmenting fuel patches through efficient fuel treatments allocation.

Keywords: Wildland fire, simulation, optimization, fire spread, patch management.

1 Introduction

Excessive fuels left from long-term fire exclusion in-
creased the risk of high intensity catastrophic wildfires
in many forests in the western USA. Fuel treatments
can mitigate fire risk (Parisien et al. 2010) by frag-
menting fuel patches, slowing fire spread and decreas-
ing fire intensity (Stratton 2004, Fernandes and Botelho
2003). Fuel treatments can also improve the efficiency
and safety of future fire suppressions (Agee et al. 2000,
Hirsch et al. 2004, Loehle 2004) and lower the chance
of fire spreading into wildland urban interface (WUI)
(Finney 2001, Mell et al. 2010).

Fuel treatments at different locations often collaborate
across a landscape to influence fire spread and intensity
(Rytwinski and Crowe 2010). Modeling for fuel treat-
ment locations can help improve the efficiency of fuel
reduction programs (Salazar and Gonzalez-Caban 1987,
Kaloudis et al. 2005). Many studies have been done
to improve the efficiency of spatial fuel treatment lay-
out in mitigating fire risks. Some studies suggested al-
locating treatments into parallel strips perpendicularly
to major fire spread directions to better intercept fire
spreads (Fujioka 1985, Catchpole et al. 1989). Others
considered fuel treatment allocation as a patch manage-
ment problem and suggested treatments should be used

to fragment high fire hazard patches composed by con-
tiguous and heavy fuels (Agee et al. 2000).

It is often challenging to select fuel treatment loca-
tions on a landscape with heterogeneous features such
as elevation, fuel types, and values susceptible to poten-
tial fire damages. Mathematical models can play impor-
tant roles to synergize information to assist the selec-
tion of landscape fuel treatment locations, or to provide
preliminary treatment layout plans that can be further
enhanced. Simulation and optimization represent two
major types of decision support approaches. Simula-
tion model has the advantage of mimicking detailed fire
dynamics by accounting for the changes and influences
of fuel, topography and weather. Repeated fire simula-
tions can help evaluate the effectiveness of various fuel
treatment layout alternatives. Finney (2006) evaluated
the efficiencies of several regular spatial fuel treatment
layouts by simulating fire spreads on the treated land-
scapes. Finney (2008) latterly used a method to search
for the fastest fire spread paths by starting and simulat-
ing the growth of a row of fires. The result of this study
suggests that fuel treatments should be allocated along
the fastest fire growth paths to reduce the rates of fire
spread. Kim et al. (2009) used a heuristic to compare
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fire spreads under dispersed, clustered, random, and reg-
ularly spaced fuel treatment layouts.

Optimization models have also been developed to
schedule fuel treatments to improve our ability to con-
trol future fires (Pyne 1984) under various possible fire
conditions (He et al. 2004). Hof et al. (2000) developed
a linear programming (LP) model to schedule fuel treat-
ments to slow the movement of a specific fire to protect a
small number of preselected locations. Wei et al. (2008)
developed a mixed integer-programming (MIP) model to
schedule fuel treatments to break the fire probability ac-
cumulation pathways to lower landscape fire risks for up
to two fire weather and duration scenarios. Konoshima
et al. (2010) developed a stochastic dynamic program-
ming (DP) approach to combine the decisions of fuel
treatment and timber harvesting in a hypothetical land-
scape to slow the spread of multiple fires. Higgins et
al. (2011) developed an MIP model to schedule seasonal
resources for prescribed fuel burning. Wei (2012) de-
veloped a two-stage model that schedules treatments to
create fire control opportunities for a large set of possi-
ble future fires. A recent study from Minas et al. (2014)
designed an integer programming model to schedule fuel
treatments across multiple periods.

Past research suggests that fuel treatments should be
used to “fragment high-risk forest landscapes (Acuna et
al. 2010)” (e.g., Agee et al. 2000, Finney 2001, Hirsch et
al. 2001, Finney 2006, 2008, Wei et al. 2008, Konoshima
2010, Wei 2012). However, most of these models rely on
the assumption that we can accurately predict the dura-
tion, weather, spread speed, and intensity of future fires,
and schedule treatments accordingly. A different mod-
eling principle has also been tested to aim at directly
managing high fire hazard fuel patches. A shortest-path
network model developed by Bevers et al. (2004) fo-
cused on facilitating fuel treatment connectivity. It sug-
gested that a large portion of a landscape needs to be
treated to form well-connected fuel breaks to fragment
fuel patches. Acuna et al. (2010) developed an iterative
approach to integrate forest and fire management under
an assumption that timber harvesting could help create
non-burnable areas that would help fragment the burn-
able patches of stands and protect valuable forest from
future fires. A study from Contreras et al. (2012) tried
to break tree-level fuel connectivity by using a logistic
regression model to compare different tree removing op-
tions. A model developed by Minas et al. (2014) defined
fuel connectivity set and schedule treatments to mini-
mize the number of connected pairs of “old fuel cells” in
multiple periods.

This research demonstrated a model revision to frag-
ment high fire hazard fuel patches without explicit pre-
dicting fire spread speeds and fire durations. High fire
hazard fuel patch is defined here as continuous land-

scape features that support high intensity fires. This re-
search compared the effectiveness of different fuel treat-
ment layouts in decreasing the potential damages from a
large number of fires. Results shows that fuel treatment
layouts directly aimed at high fire hazard fuel patch frag-
mentation can perform consistently well across a broad
range of possible future fire situations.

2 Methods

2.1 Review of an existing model Previous re-
search suggested fire spread in a landscape can be mod-
eled by continuously tracing fire spread between adja-
cent cells through the minimum travel time (MTT) algo-
rithm (Cheng and House 1996, Finney 2002, Sturtevant
et al. 2009). Using the MTT algorithm, Wei (2012)
developed a MIP model to select fuel treatment loca-
tions by explicitly modeling many future fires and their
spread with predefined future fire behaviors and dura-
tions. This model has been applied in a set of raster
landscapes. Fuel treatments were assumed to be able to
influence the fire intensity and the rate of fire spread in a
treated cell, and consequently alter the spread of future
fires. This mathematical formulation is reviewed here.

Set and Subscripts

C and r: the set and index of raster cells in a
landscape.

C
′

and r
′
: the subset and index of raster cells that

have high fire intensity.

C
′′

and r
′′
: the subset of raster cells that have low

fire intensity. Fuel treatment is not required in
these cells.

S and s:the set and index of raster cells from which
ignitions could start.

Qr and q: the set and index of cells directly adja-
cent to cell r (sharing an edge or a corner).

Parameters

B : the number of cells fuel treatment can be sched-
uled in.

D: the expected fire duration.

Ps: the probability of a fire igniting from cell s in
the next discrete planning period.

Lr: value to be protected from fire in each cell r
(loss if burned).

K: a positive constant denoting the delayed fire
spreading time by fire control in a treated cell,
or in any other cells with low fire intensity.
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τ q,r: fire travel time from the center of cell q to
the center of cell r without treatment.

Variables

xr′ : binary variable tracking treatment decisions

in cell r
′
. We assume only cells currently hav-

ing high fire intensity can be treated.

xr′ =1 denotes that fuel treatment is scheduled in

cell r
′
; xr′ = 0 denotes that no fuel treatment

is scheduled in cell r
′
.

xr′′ : denoting cell r
′′

currently having low fire in-
tensity.

ts,r: contiguous variable tracking the fire arrival
time to cell r after ignited from cell s.

ys,r: binary variable tracking whether fire will
burn cell r within a duration D after ignited
from cell s; ys,r=1 denotes this fire will burn
cell r ; otherwise ys,r=0.

Mathematical formulation

Minimize :

Z =
∑
s∈S

∑
r∈C

Ps × Lr × ys,r (1)

Subject to :

ts,s = 0 ∀ s ∈ S (2)

ts,r ≤ ts,q + τq,r +K × xr
∀ s ∈ S, r ∈ C, q ∈ Qr (3)

ys,r ≥
D − ts,r

D
∀ s ∈ S, r ∈ C (4)

∑
r′∈C′

xr′ ≤ B (5)

xr′′ = 1 ∀ r
′′
∈ C

′′
(6)

Objective function (1) minimizes the total fire loss
from all modeled fires within a predefined duration D.
Loss caused by each fire is the total value loss within
the fire footprint at the end of duration D. This loss is
weighted by the probability of that particular fire igni-
tion within the next discrete planning period (i.e. one
year). Equation (2) sets the fire arrival time to cell s as
zero when we assume fire is ignited from it. A fire is ig-
nited from every possible ignition cell on the landscape.
Equation (3) applies the MTT algorithm to track the
earliest time ts,r that fire could arrive the center of cell
r from any of its eight adjacent cells q after originated

from cell s. The major fire spread direction in each cell
represents the fastest fire spread direction (front fire)
in that cell. Fires also spread along other directions at
slower speeds as flank fires or back fires. It assumes fire
spreads in each cell following an elliptical shape (Green
et al. 1983) and the value of τq,r will be calculated using
the major fire spread direction, distances between adja-
cent cells and the dimension of the ellipse reported by
software such as FlamMap (Finney 2006). It assumes
cells with low fire intensity could delay fire spread due
to the improved fire control efficiency. The amount of
time delayed is defined by a parameter K. By setting the
value of K larger than the modeled fire duration, it as-
sumes no fire would spread into the center of cell r if the
fire intensity in it were low. Equation (4) defines binary
variable ys,r working as a switch to track whether fire
started from cell s would burn cell r within duration D.
If fire reaches the center of cell r within duration D, then
D>ts,r, therefore ys,r will be set to one by Equation (4);
otherwise ys,r could be either zero or one. When given
the choice (zero or one for ys,r), the model will set it to
zero to minimize the fire loss within duration D in ob-
jective function (1). Equation (5) is a budget constraint
reflecting the number of cells with higher fire intensity to
be treated in the landscape. Equation 6) lets the model
recognize that any cell with low fire intensity should be
considered as same as a treated cell and can be used to
delay fire spread. The fuel treatment allocation decision
in this model depends on the prediction of many future
fires along with their spread directions, spread speeds
and durations.

2.2 A revised formulation for fuel patch man-
agement An important objective of fuel treatment is
to facilitate the future fire control. However, the future
fire locations and fire conditions are often difficult to
predict due to stochastic weather changes and fire du-
rations. Fuel treatment layout optimized for a specific
future fire condition might not provide the best con-
trol when the actual condition does not follow what has
been planned for. In this research, we will revise the
above model to switch emphases from predicting and
scheduling treatments to control specific future fires to
using treatments to fragment fuel patches. We will com-
pare the effectiveness of different treatment strategies
through post-treatment fire simulations.

The above mathematical programming model can be
easily revised to focus on high fire hazard fuel patch
management. We will use a set of new equations (7)
and (8) to substitute the original equations (3) and (4).

ts,r ≤ ts,q + xr ∀ s ∈ S, r ∈ C, q ∈ Qr (7)

ys,r+ts,r ≥ 1 ∀ s ∈ S, r ∈ C (8)

mailto://yu.wei@colostate.edu
http://mcfns.com


Wei and Yehan (2014)/Math.Comput. For.Nat.-Res. Sci. Vol. 6, Issue 1, pp. 1–10/http://mcfns.com 4

This new set of equations eliminates the requirement
of predicting and calculating the parameter τq,r in
Equation (3), which is also highly stochastic and dif-
ficult to predict. The revised model will still account for
the information such as values to be protected from fire,
fire intensities and the fire ignition probability distribu-
tion in a landscape. After a fire ignited from a cell s, if
cell r is located in the same high fire hazard fuel patch
as s, ts,r will be set to zero following the equation (7);
otherwise ts,r will be set to one indicating that cells r
and s are not in the same high fire hazard fuel patch and
fire will not spread from s to r. In equation (8), if cell
r will not be burned by the fire ignited in cell s, ys,rwill
be allowed to be zero after ts,ris set to one; otherwise
ys,rwill be set to one.

The nature of this revised formulation in fragmenting
fuel patches can be described through an example. For
demonstration purpose, we first set the probability of
fire ignited in every cell to be 0.01 in each year, and set
the value to be protected from fire in each cell to be 1.0.

N : the total number of disjointed fuel patches in the
landscape after treatment.

i : the index of each fuel patch after treatment.

Mi: the number of cells within each fuel patch i.

With constraint (7), fire started from each of the Mi

cells in patch i can spread into all the other cells within
the same patch i. An ignition in patch i will cause a
fire loss of Mi. If we assume that a cell can be burned
repeatedly, the total expected fire loss in each fuel patch
i becomes 0.01×Mi

2. The total expected future fire
loss from the N patches is 0.01 ×

∑N
i=1M

2
i . On a ho-

mogeneous landscape with a fixed number of patches
(a constant N ), the best way to minimize the value of∑N

i=1M
2
i is to evenly distribute the number of cells into

all patches (Appendix). In general, if the total area of
high fire hazard fuel patches is a constant, fragmenting
these areas into a larger number of smaller, isolated and
even-sized fuel patches would lead to lower overall land-
scape fire risk. However, in real world, the probability
of fire ignited from each cell s (Ps), and the value to be
protected from fires in each cell r (Lr) may vary across
a landscape. This model will need to weigh the impacts
from these landscape heterogeneities when it fragments
the larger fuel patches. The value of N is not a predeter-
mined number either. Instead, it is also the result from
fuel treatments.

As we discussed earlier, solutions discovered from
this patch management model are not sensitive to the
changes of certain fire behaviors such as fire duration,
the rate of fire spread and the major fire spread direc-
tion. An implicit assumption of this model is that each

fire will spread for a very long duration; therefore a fire
ignited in a cell will eventually spread into all other cells
within the same high fire hazard fuel patch unless it
can be stopped at cells of low fire intensities, i.e. fuel
breaks. This allows the model to concentrate on a land-
scape strategy to break fuel patches and ignore certain
fire-spread details.

2.3 A method to evaluate the treatment effec-
tiveness Spatial fuel treatments layouts designed under
different assumptions are often different. We will evalu-
ate the effectiveness of these layouts by simulating many
future fire ignitions and summarize the losses from these
hypothetical fires.

1. Define a set of fire scenarios, index by r. For each
scenario r, fires are simulated following certain pre-
defined uniformly distributed random fire duration,
i.e. 0 to 720 minutes. The major fire spread direc-
tion in each cell is determined by a predefined distri-
bution of random fire spread direction, i.e. uniform
distribution from 0 to 360 degrees.

2. K fuel treatment layouts, indexed by k, would be
tested under each fire scenarios r defined in 1).

3. M replications, indexed by m, are generated to test
the effectiveness of each fuel treatment layout k un-
der each specific fire scenario r.

4. For each tested replication m, randomly selected
fires are ignited from different locations (cells) on
a landscape with their durations and major spread
directions randomly fluctuated following the distri-
bution defined by the corresponding fire scenario r
in 3). The expected loss of each simulated fire is
calculated by multiplying the ignition probability
of this fire with the simulated fire loss of this fire.

5. The total expected losses gk,r,m, from all simulated
fires for fuel treatment layout k will be calculated
under each fire scenario r, for each replication m.

The effects of different fuel treatment layouts k in de-
creasing fire loss under each scenario r are then summa-
rized and compared by using the fire losses calculated
from all replications. Tukey’s test (see Goldsman and
Nelson 1998) is used to compare the mean fire losses of
different treatment layout k under each tested fire sce-
nario r. The formulations are listed below.

Gk,r =

∑
m gk,r,m
M

∀ k, r (9)

Sr =

√∑
k

∑
m (gk,r,m −Gk,r)

2

(M − 1)×K
∀ r (10)
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Equation (9) calculates Gk,r, the average landscape
fire losses across all M replications used to study the
effectiveness of the fuel treatment layout k under the
tested fire scenario r. Sr calculated by equation (10) is
the standard deviation of all M×K replications tested
across K fuel treatment layouts. Tukey’s confidence in-
tervals for uk,r−uk′,r (difference between the true means
of treatment k and k’ under fire scenario r) are estimated
by equation (11) as

Gk,r − Gk′,r ±
Q

(∂)
K,v√
2
× s×

√
2

M
∀ r (11)

for all different k and k’, where Q
(∂)
k,v is the 1- α (for

example α = 0.05) quintile of the Studentized range dis-
tribution with parameter K and v = K × (M − 1). We
will compare whether the difference between any two
expected fire losses due to different treatment layouts
is significant under the confidence coefficient α for each
tested fire scenario r.

3 Results

3.1 Hypothetical test case We first tested the re-
vised model to schedule treatments in an artificial land-
scape with 7×7 cells. Four levels of fuel treatment ar-
eas (seven-cell, eleven-cell, thirteen-cell, and twenty-four
-cell) were modeled to fragment high fire hazard fuel
patches. These tests also assume there would be suf-
ficient suppression resources to stop future fires within
treated cells. Allocating treatments into seven, eleven,
thirteen and twenty-four cells each breaks the land-
scape into two, three, four or nine disjointed smaller fuel
patches regardless of the specific rate of fire spread and
major fire spread direction in each cell (Figure 1).

3.2 Realistic test case A small portion of Sequoia
and Kings Canyon National Parks (SEKI), with an ex-
tent of 3.6 by 3.6 km is used as another test example
here. This landscape is rasterized into four hundred
180m wide raster cells. We first ran the original fire
spread based mathematical programming model (Wei
2012) by assuming a prevailing southwest wind at eight
km per hour with moderate understory fuel moisture
condition. FlamMap is used to quantify fire behavior in
each cell including the major fire spread direction, the
fire flame length, the dimension of the burn ellipse and
the rate of fire spread. For comparison, we also run the
patch management model to focus directly on high fire
hazard fuel patch fragmentation. This new model does
not require us to retrieve certain fire behavior data such
as spread speed and spread directions from FlamMap,
and it does not require an assumption of future fire du-
ration. In both tests, a 2.44 m (eight feet) flame length

Figure 1: Four fuel treatment levels (seven-cell, eleven-
cell, thirteen-cell, and twenty-four-cell) in an artificial
landscape of 7×7 cells using the patch management
model. These tests assume future fires cannot spread
across treated cells with sufficient resources available for
suppressing low intensity fires.

threshold is used as an example to separate cells with
high or low fire intensity potentials. We assume only
cells with a predicted high fire flame length greater or
equal than 2.44m can benefit from fuel treatment, which
will decrease the flame length in treated cells to be lower
than the 2.44m threshold.

The value to be protected from fire in each cell is
assumed to depend on the presence of WUI (with a value
of 1.0 per cell) and other forests (0.4) within that cell.
These values vary between locations across the study site
(Figure 2a). The maximum value that a cell can have
is 1.4 (Figure 2a). The annual ignition probability Ps

assigned to each potential fire ignition cell s (Figure 2b)
is calculated based on the historical ignition frequency
in each cell divided by the total number of years within
which we tracked the fire ignitions in SEKI. In this test
case, we used all the ignitions during the past 83 years.

3.3 Treatments comparison We compare the three
8-cell fuel treatment solutions (described in Figure 3)
corresponding to three tested fire duration assumptions:
1) patch management, which is equivalent to assuming
infinite fire duration, 2) a shorter 360-minute fire dura-
tion, and 3) a longer 24-hour fire duration. Scheduling

mailto://yu.wei@colostate.edu
http://mcfns.com


Wei and Yehan (2014)/Math.Comput. For.Nat.-Res. Sci. Vol. 6, Issue 1, pp. 1–10/http://mcfns.com 6

Table 1: The distributions of high fire hazard fuel patches with different fuel treatment layouts configured based on
various fire duration assumptions.

Seq. No. of hazard fuel
patches sorted by patch area

Patch size without
treatment (ha)

Patch size after treated 8-cell under various fire
duration assumptions

360-min
duration

24-hr duration Patch management
Inf duration

1 599 573 288 288
2 10 10 156 146
3 6 6 97 97
4 3 3 16 26
5 3 3 10 10
6 3 3 10 10
7 3 3 6 6
8 3 3 6 6
9 3 3
10 3 3
11 3 3
12 3 3
13 3 3

The value to be protected

0

1

1.4

Ignition probability per year

0

0 - 0.024

0.0241 - 0.069

0.069 - 0.186

(a) (b)

Figure 2: (a) The value to be protected from fire in each
cell is assumed to depend on the presence of WUI (with
a value of one per cell) and other forests (0.4) within
that cell. (b) The annual probability of fire ignited from
each cell is calculated using historical records.

fuel treatments under the assumption 1) only requires
data to identify cells that potentially support high fire
intensities. Selecting treatment locations under either
the assumption 2) or 3) requires more detailed fire be-
havior data including both fire intensity and the rate of
fire spread along different directions in each cell.

Without fuel treatment, there are currently eight high
fire hazard fuel patches composed by cells with high
fire intensity potentials. The size distribution of these

patches is described in Table 1. After scheduling treat-
ments in eight cells, the 20×20 landscape is fragmented
into many smaller and disconnected high fire hazard fuel
patches.

Implementing the explicit patch management method
is equivalent to modeling fires with infinite duration.
Under this case, the model suggests an optimal fuel
treatment layout as shown by Figure 3a. In comparison,
with the assumption of a shorter fire duration (D is set
to 360 minutes in Equation (4)), the model designs the
optimal eight-cell fuel treatment layout as shown in Fig-
ure 3b. For planning scenarios with a longer (although
not infinite) fire duration (D is set to 24-hr in Equation
(4)), the optimal fuel treatments locations are given in
Figure 3c.

A direct observation of the distributions of high haz-
ard fuel patches reveals some differences of optimal spa-
tial fuel treatment patterns under different fire duration
assumptions. The largest high fire hazard fuel patch is
599 hectares in size without treatment. In the case of us-
ing the 360-minute fire duration assumption, after eight
cells are treated, the landscape still has eight high fire
hazard fuel patches. However, the largest one is twenty-
six hectares smaller than the largest high fire hazard fuel
patch before treatment. When scheduling treatments
under the assumption of 24-hour fire duration, the num-
ber of high fire hazard fuel patches increases to thirteen,
and the size of the biggest patch decreases to about half
of the largest patch before treatment. Treatments help
break the landscape into a larger number of high fire haz-
ard fuel patches under longer fire duration assumption.
By implementing the patch fragmentation strategy with
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Figure 3: Spatial fuel treatment patterns and the high fire hazard fuel patches after treatments under three modeled
fire duration assumptions.

Table 2: Fires are simulated from every possible ignition locations on the tested landscape under a set of preselected
fire scenarios. This table compares the efficiency of different fuel treatment layouts in lowering the landscape expected
fire losses under each preselected future fire scenarios. The simulation duration of each fire is assigned based on a
random draw from a corresponding uniform distribution. The major fire spread direction in each raster cell is also
determined by a random draw from the uniform distribution with a range between 0 and 360 degrees.

Stochastic
Scenario
Seq.

Simulation duration used
for post treatment

evaluation (minutes)

Expected fire loss after fuel
treatments scheduled under

different assumptions

Comparing fuel treatment
effectiveness using the Tukey’s

method (95% confidence) #

From To 360-min 24-hr Patch
1 0 360 18.0 18.2 18.1 No solution is better
2 0 720 33.8 25.0 25.0 24hr>360m,Patch>360m
3 0 1,800 88.6 31.0 30.2 24hr>360m,Patch>360m
4 0 3,600 144.0 33.4 32.7 24hr>360m,Patch>360m
5 0 7,200 178.2 34.8 33.8 24hr>360m,Patch>360m
6 0 14,400 195.4 35.4 34.4 24hr>360m,Patch>360m
#In the last column, A > B means solution based on duration A is significantly better than B.

the assumption of infinite fire duration, this model will
still schedule fuel treatments to fragment the landscape
into thirteen patches with the largest patch of 288 ha
and the second largest patch of 146 ha. The patch dis-
tribution between using the 24-hour duration and using
the infinite fire duration are very similar (Table 1).

3.4 Comparing the treatment effectiveness The
three fuel treatment solutions (corresponding to the as-
sumed 360-minute fire duration, 24-hour fire duration,
and the infinite fire duration/patch managements) are
tested under each of the six random fire scenarios. In
each scenario, we simulate fires ignited from all possible
locations in a landscape under random fire durations

range from (0, 180) minutes up to (0, 14,400) minutes
(Table 2) depending on the specific scenario tested. The
major fire spread direction in each cell also randomly
varies between zero and 360 degrees. The Tukey’s test is
used to compare whether there are significant differences
between the effects of different fuel treatment layouts in
lowering the total expected landscape fire losses.

According to the test results (Table 2), if all simulated
fires last randomly between 0 and 360 minutes, none of
the fuel treatment layouts would perform significantly
better than any of the other two fuel treatment layouts.
However, fuel breaks scheduled for fires lasting for 24-
hr or infinite are significantly more effective in control-
ling long duration fires. Based on the testing results,
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fuel treatment layouts aimed at patch management or
at controlling fires of 24-hr duration still perform well
when fires have short duration. However, the treatment
layout aimed at controlling fires with shorter durations
does not perform as well when the durations of future
fires are much longer.

4 Discussion and conclusion

This research provides a revised mathematical formula-
tion to directly break contiguous high fire hazard fuel
patches. By assuming infinite fire duration, it also as-
sumes that any fire ignited within a high fire hazard
fuel patch would eventually burn the entire patch. How-
ever, a fire could not spread across treated areas as we
assumed that suppression would be effective in stopping
low intensity fires. This patch management strategy can
also account for the spatial distributions of fire ignitions
and the values to be protected from fires.

Studies in the past show there are often “dramatic”
variations in future fire conditions (Boychuk and Martell
1996). Because of the uncertainty in future fire ignition
locations, fire weathers (wind, moisture etc.), fuel accu-
mulation speed, and fire suppression conditions, finding
one fuel treatment layout that can perfectly fit to all
future fire scenarios is difficult, if not impossible. Some
studies pointed out that fuel continuity is an important
factor influencing fire risk (Arkle et al., 2012; Ireland
et al., 2012; Contreras et al. 2012). Instead of pre-
dicting and integrating a large set of detailed future fire
scenarios into a fuel treatment layout model, we used an
optimization model to directly fragment high fire hazard
fuel patches.

Computing time could become a limit when a large
set of stochastic fire scenarios are required to be mod-
eled to inform the landscape fuel treatment decisions.
The patch management model introduced here is a de-
terministic model, or can be considered as a model built
on the worst case fire scenario (fires with infinite dura-
tion). It avoids the explicitly modeling of a large number
of highly stochastic future fire scenarios. In addition,
because the patch based fuel treatment design does not
depend on the accurate prediction of fine scale stochas-
tic fire events, it would be less demanding on creating
and using high quality fire samples through accurate fire
simulations or fire surveys.

Although the patch management model saves us from
modeling multiple future fire scenarios, we still need to
model fuel treatments by considering the possible fire
ignition patterns. To assign a set of relative and fair
weights to all modeled fire ignitions, we chosen to weight
the potential loss of each fire by its ignition probability
in the current model. We also allow each cell to be
burned for multiple times under the assumption that

each ignition would be independent. A more complex
but potentially more realistic assumption would be al-
lowing a fire to burn each cell only once during certain
time interval (i.e. a planning period). However, un-
der this assumption, we will need to explicitly model
the sequences of different fire occurrences, and track the
interactions between fires, i.e. how earlier fires would
influence the spreads of later fires. This would be an
interesting future study, although it would also be much
complicated.

Patch management not only can be used in breaking
large patches of high fire hazard fuels, but also may be
implemented in preventing the spread of other detrimen-
tal disturbance agents such as insects and diseases, or
invasive species etc. Patch management is a challenging
landscape level decision problem due to the possible spa-
tial variations of size, shape, connectivity and location
of patches. This research introduced and tested a mod-
eling method to fragment patches in fuel management,
which also has the potential of being used to model the
spread of insects and decease, or to control the spread
of invasive species. This also represents an interesting
future study.
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A Appendix

An example of how to best allocate β cells into N dis-
jointed patches to minimize cell interactions in case of
fire spreading between cells in each patch.

Minimize
M2

1 +M2
2 +M2

3 + · · ·+M2
N

St:
M1 +M2 +M3 + · · ·+MN = β (12)

M1,M2,M3 . . . . . .M3 ≥ 0

This problem can be solved through Lagrangian
method. We can use v to denote the shadow price of
equation (12):

L (Mi, v) =M
2
1 +M2

2 +M2
3 + · · ·+M2

N +

v × (β −M1 −M2 −M3 − · · · −MN ) (13)

At the stationary point, both ∂L(Mi,v)
∂Mi

= 0, and
∂L(Mi,v)

∂v = 0, and therefore:

M1 = M2 = M3 · · · = MN
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