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MULTI-SOURCE K-NEAREST NEIGHBOR, MEAN BALANCED
FOREST INVENTORY OF GEORGIA
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Warnell School of Forestry and Natural Resources, The University of Georgia, Athens GA 30602 USA

Abstract. We describe here a case study in compiling a high-resolution forest inventory for central
Georgia using the K-nearest neighbor approach with multi-source data and Mean Balancing correction
for the estimation bias. In general, multi-source data collected through various incompatible designs
cannot be mixed due to intractable variances and unknown bias. Because of this incompatibility abundant
information about the environment (i.e. atmospheric conditions, soil composition, spatio-temporal data
from nearly 40 years of satellite imaging, and a wealth of site specific studies with sampling for various
growth attributes) frequently cannot be used to produce new unbiased estimates for the variables and
areas of interest. This study was carried out in central Georgia, and the k-NN approach was used to
fuse together various incompatible data from public and private sources. We used the Mean Balancing
approach to remove the bias resulting from this data fusion. The result of the study is a derivation of an
unbiased high-resolution forest inventory, which can be used for small area’s fiber supply assessment analysis.

Keywords: Landsat 5 Thematic Mapper, Forest Inventory and Analysis, landscape analysis, total
balancing, large-area inventories

1 Introduction

Under multi-use sustainable natural resource manage-
ment, the provision of timely, reliable, and accurate in-
formation about natural resources, their forested ecosys-
tems, and adjacent areas is essential for maintaining
their ecological balance and sustained productivity. This
is especially important where forests tend to be fast
growing and changing, highly fragmented in area and
ownership, and the demand for their wood products is
high, such as those in Georgia and other southeastern
states. However great the need for forest product is
though, there is a lack of detailed stand-level informa-
tion for large portions of this region.

The United States Forest Service Forest Inventory and
Analysis (FIA) Unit program collects forest informa-
tion and produces regular reports on the condition of
forests throughout the country. In Georgia, the FIA
data is used in various large area inventory based anal-
yses ranging from carbon studies to tree mortality anal-
ysis (Van Deusen 2010, Meng and Cieszewski 2007).
The FIA inventory provides reliable, unbiased estimates
suitable for reporting across large areas (Blackard et al.
2008, Walker et al. 2007, Sivanpillai et al. 2006, Way-
man et al. 2000). However, the large-area FIA inven-
tories are not suitable for applications to smaller areas,

and there is still a compelling need for higher-resolution
forest information. A more suitable source for this infor-
mation is compiled by local agencies familiar with those
areas whose intimate knowledge is needed for their man-
agement. The forest product industry and other large
area forest owners typically maintain their own private
inventories that are more detail oriented and suitable for
small area, stand-level, forest management.

Nearest neighbor methods are an established means to
generate estimates of forest volume (Trotter et al. 1997,
Franco-Lopez et al. 2001, McRoberts 2012), basal area
(McRoberts 2009, Meng et al. 2009a, Sivanpillai et al.
2006), biomass (Gjertsen 2007, Tomppo et al. 2008,
Reese et al. 2010), and carbon (McRoberts et al. 2010,
Labrecque et al. 2006, Blackard et al. 2008), to only
name a few. This method’s popularity, in part, stems
from its intuitive implementation, the ability to generate
simultaneous estimates for multiple variables using the
same parameters usually the number of nearest neigh-
bors K, and the ability to make use of noisy data for
prediction (Cieszewski and Lowe 2008). However, the
use of nearest neighbor methods with multi-source data
are inherently biased (Iles 2009) and should be appro-
priately considered.

The total-balancing concept proposed by Iles (Iles
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2009, also Cieszewski et al. 2005) is the foundation of
our approach to addressing the issue of bias in our high-
resolution forest inventory for the state of Georgia. In
this approach, the large-area FIA information and local
forest inventories are used together to develop a spatially
explicit inventory that maintains the large-area unbiased
properties of the FIA inventory and the local precision of
the forest industry inventories, even though they are tra-
ditionally viewed as having incompatible variances. The
purpose of this research is twofold. First, we generate a
broad area, high resolution, spatially explicit inventory
for Georgia that is equal to an unbiased mean volume per
hectare derived from the FIA. Second, we demonstrate
the potential gains in local precision we can obtain by
fusing local inventory information with the explicit in-
ventory while maintaining overall balancing.

2 Methods

2.1 Study area The study area for this research is
the state of Georgia, USA (Fig. 1). As a whole, Geor-
gia is a typical southern state with 66.7% of forest cover.
It has over 9.7 million hectares of forestland, of which
approximately 45% are conifer, 42% are deciduous, 12%
are a mixed forest type, and the remaining percentage
non-stocked (Cieszewski and Lowe 2007). Adding to the
complexity of the landscape, an approximate 650,000
non-industrial landowners hold 75% of the forestland
whose average parcel size is decreasing (Georgia Forestry
Commission, 2008).

There are distinct differences in the composition
of Georgia forests when comparing its locations from
north to south. Hardwood ecosystems dominate the
areas in the north part of Georgia (Fig. 2A) (Tab.1).
The forests transition to conifer-dominated ecosystems
as one proceeds southward and to the east (Fig. 2B)
(Tab. 1).

2.2 Satellite imagery We used Landsat 5 Thematic
Mapper satellite imagery to model the cubic-meter per
hectare estimates using the k nearest neighbor approach.
We attempted to attain imagery from the leaf-off season
early in the year, leaf-on from the summer months, and
another leaf-off image from late in the year. However,
this was not possible in all cases (Tab. 2) due to cloudy
conditions. We acquired two to four cloud-free images
for each of the 12 scenes that wholly or partially cover
most of the state. A minimum of eight well-distributed
ground control points were located on each scene and the
root-mean square error calculated using the early leaf-off
scene as the base image. No RMSE exceeded 30 meters.
A visual inspection revealed no egregious misalignment
in the imagery. Two UTM zones, zone 16 and zone 17,

Figure 1: The 12 Landsat WRS 2 scenes included in the
study.

Figure 2: Total volume summarized by FIA regions for
the A) coniferous forestland, and B) deciduous forest-
land for the state of Georgia.

overlap the state. To facilitate processing, we created a
custom coordinate system definition that shifted UTM
zone 17 west by 500,000 meters and projected each image
to this custom UTM zone. Landsat 5 Thematic Mapper
bands 1 – 5 and 7 from each image were composited and
used at the 30 meter resolution.

2.3 Inventory data To maintain plot integrity, the
Forest Service does not release cruise plot coordinates
to the public. However, they do allow their use at one
of their secure data centers. We processed the satellite
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Table 1: Forestland area and total volume summarized by FIA regions reported by the FIA.

Conifer Forest Mixed Forest Deciduous Forest
FIA Region Forestland Volume Forestland Volume Forestland Volume

(1000 ha) (Mil. m3) (1000 ha) (Mil. m3) (1000 ha) (Mil. m3)
Northern 228.2 486.4 189 435 782.3 1,781.00

North Central 452.4 911.4 176 314.8 679.5 1,504.20
Central 1,487.20 2,378.30 340.7 463 1,241.20 2,060.70

Southeastern 1,764.80 2,560.40 311.6 392.5 1,109.60 1,678.20
Southwestern 568.2 836.9 145.7 182.9 446.4 695.7

Table 2: Acquisition dates of the Landsat 5 satellite imagery used in the volume estimation processes.
TM Scene Image 1 Image 2 Image 3 Image 4

Path 17, Row 37 4/11/2010 9/2/2010 12/7/2010 NA
Path 17, Row 38 3/13/2010 6/14/2010 12/7/2010 NA
Path 17, Row 39 6/14/2010 10/4/2010 11/21/2010 NA
Path 18, Row 36 4/18/2010 6/21/2010 11/12/2010 NA
Path 18, Row 37 4/2/2010 10/11/2010 12/14/2010 NA
Path 18, Row 38 1/12/2010 5/20/2010 10/11/2010 12/14/2010
Path 18, Row 39 2/13/2010 10/11/2010 12/14/2010 NA
Path 19, Row 36 11/16/2009 3/24/2010 10/2/2010 11/19/2010
Path 19, Row 37 2/20/2010 7/30/2010 11/19/2010 NA
Path 19, Row 38 2/20/2010 7/30/2010 11/19/2010 NA
Path 19, Row 39 2/20/2010 10/18/2010 11/19/2010 NA
Path 20, Row 36 1/29/2010 10/9/2010 NA NA

imagery using their field measured GPS locations at the
Southern Research Station in Knoxville, Tennessee in
December of 2010. We used a series of arcpy (ESRI
2010) scripts to extract the TM band 1 – 5 and 7 pixel
values for each FIA cruise locations for all images used
in this study (Tab. 2).

A fundamental aspect of the FIA’s measurement pro-
tocol is the fact that measured plots shall not be given
preferential treatment by the inventory crew or the pub-
lic. The landowner is permitted to manage the forest
as they see fit. Thus, there is the possibility that the
database may contain outdated information about a plot
since any changes to the land that occurs after the in-
ventory are not recorded until the next measurement cy-
cle. Absent of the plot locations outside the FIA’s data
center, we were unable to perform a visual inspection
of the TM data at each plot center. However, we did
evaluate the spectral information stored in the training
sample list using a series of pseudo-image composites,
where the ”pseudo-image composites” refer to an image
whose pixels have been sequentially rearranged from the
lowest NDVI (Eq. 1) (on the left) to the highest NDVI
(on the right). We used the following steps to generate
the pseudo-images for each scene:

1. sort the training samples according to their NDVI

(Eq. 1) values,

2. reorganize the data into a grid that stores the in-
formation from one TM band,

3. repeat step 2 for each spectral band in the training
sample list,

4. import each band into ArcGIS, and generate the
pseudo-image using the Composite Bands com-
mand, and then

5. repeat steps 2 and 4 for the NDVI values.

NDV I =
NIR−RED

NIR + RED
(1)

where: NIR is the near-infrared layer (TM band 4), and
RED is the red layer (TM band 3).

The pseudo-image shown in Figure 3 presents the
spectral information stored in the training sample list
in an organized manner where the site with the low-
est NDVI measure occurs in the lower-left and the site
with the highest NDVI measure occurs in the upper-
right. By visual inspection of the actual TM and NDVI
images, and with the aid of the 2010 NAIP aerial pho-
tography, we were able to loosely define the cover types
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represented in sections A – G as seen in Figure 4. The
pixels in sections A) and B) were captured in areas void
of green vegetation such as a cultivated field (Fig. 4) or
a place inundated with water. Near the other end of the
NDVI spectrum, the samples in frame F) (Fig. 3) are
sites captured in mature forested areas with full canopy
closure (Fig. 4). The sites in frames C through E con-
tain samples from old fields, young pine plantations, and
thinned forests. Frame G contained the samples with
the highest NDVI values. These are cropland sites with
abundant, low-lying, fast green vegetation. We used the
forested/non-forested thresholds determined by this pro-
cess for each scene to assess which, if any, FIA plots had
been harvested between the time a plot was measured
and the capture of the late-winter TM image. We as-
signed those plots a volume per hectare (m3) equal to
zero.

We used the Forest Vegetation Simulator
(Wykoff et al. 1986, Dixon 2002) to project the
FIA field measurements to a common end-of-year 2010.
These data are our 2010 common timeline FIA data.
We implemented the SN variant and accepted the data
processing defaults. The projected dataset contains
6,367 total plots that we have classified as deciduous,
mixed, or evergreen according to their dominant specie
representation (Tab. 3). There were 150 non-stocked
and 2,122 non-forested plots within the state that were
not used in the analysis.

We stratified the plots further by the WRS2 scene
boundaries (Fig. 1). There is overlap among the scenes
in both a north-south and east-west direction so some
plots were used multiple times in different scene-level
calculations (Tab. 4). These stratified data are the
source of the target mean used in the scene-level scal-
ing process and as the input training samples used in
the volume estimation process. The data files, one for
each TM scene, includes FIA plot age, cubic-meter basal
area per hectare (BA), cubic-meter volume per hectare
(CF), county FIPS code, the TM scene identifier, and
the TM spectral summaries that were recorded at each
plot center.

We obtained 918 conifer forest polygons and associ-
ated stand summary information from our various in-
dustrial partners with holdings in WRS2 path 18, row
37. We visually inspected each area on the early and
late in the year leaf-off TM and on the 2010 USDA Farm
Service Agency National Agriculture Imagery Program
aerial photography to ensure the data did not include
any partially harvested stands. We manually recoded
the stand summaries to zero for any stand that reflected
a total harvest. We projected the individual stand ages,
volumes and basal area measures to a common 2010 end-
of-year timeline. The final industrial data set contained
19,210 hectares. Their ages ranged from zero to 61 and

Figure 3: Pseudo-Landsat image generated from FIA
sample sites representing A) bare ground sites, B-C)
the transition to forest, D-F) the transition to a closed
canopy forest, and G) cropland.

average volume per hectare was 158 m3.

2.4 Land cover We used a composited 2008 Land
Use Trends Land Cover of Georgia (GLUT) (NARSAL
2006) and National Land Cover Data (NLCD) 2006 (US-
DOI, 2006) to stratify the land base into generic conifer,
mixed forest, and deciduous forest types. The composite
was created using a raster intersection where

Composite Land Cover = GLUT ∗ 1000 + NLCD.

This procedure outputs a single raster layer whose values
represent the inputs from both data sets. For example, a
cell whose output is ”31042” represents an area classified
by GLUT as clearcut, class 31, and classified by NLCD
as evergreen, class 42. The overlay resulted in almost
200 unique combinations. We reduced the number of
classes by reclassifying the cells using the cross-matrix
(see Tab. 5). We assumed that the cells classified by
GLUT as a clearcut would ultimately result in an ev-
ergreen forest. We assigned all cells classified as ever-
green by one agency and deciduous by the other to the
mixed forest type. The classes not listed in the table (i.e.
urban, GLUT cropland/pasture, and water) were used
as a non-forest mask. Statewide, there were a total of
9,744,747.8 hectares of forested land represented in this
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Table 3: Summary of age, basal area, and cubic-meter volume per hectare for all FIA ground measurements.
Hardwood Mix Pine Non-stocked No Forest

# of Stands 1,628 634 1,833 150 2,122
Age Mean 48 38 27 3 0

St. Dev. 30 24 17 2 0
Min. 0 1 0 0 0
Max. 149 162 115 5 0

Basal Area (m2) Mean 9.1 21.8 21.8 0 0
St. Dev. 4.9 10.3 10.6 0 0

Min. 0 0 0 0 0
Max. 38.3 60.4 98.7 0 0

Vol / Ha (m3) Mean 144.1 125 117 0 0
St. Dev. 109.8 89.8 83.2 0 0

Min. 0 0 0 0 0
Max. 810.6 436 622 0 0

Table 4: Summary of 2010 common timeline FIA plot measurements for the 12 TM scenes encompassing the state
of Georgia.

Volume / Hectare (m3)
Path / Row Cover Type # Plots Mean St. Dev. Min. Max.

17 / 37 Pine 358 126 8 0 569
17 / 38 Pine 682 111 5.4 0 569
17 / 39 Pine 264 97.3 7.6 0 348
18 / 36 Pine 107 151 17.6 0 622
18 / 37 Pine 613 124 6 0 569
18 / 38 Pine 689 106 5 0 569
18 / 39 Pine 183 102 9 0 295
19 / 36 Pine 143 139 14.7 0 622
19 / 37 Pine 345 125 8.1 0 513
19 / 38 Pine 253 105 7.9 0 376
19 / 39 Pine 37 108 21.7 0 276
20 / 36 Pine 84 115 15.7 0 513

dataset. Adhering to the above re-classification scheme,
we labeled 44% of stands as conifer, 18% as mixed, and
37% as deciduous class.

2.5 Software We used a variety of commercial soft-
ware and in-house programs to process the data. Im-
age co-registration, data projection, land cover re-
classification, and data cataloging tasks were performed
in ESRI’s ArcGIS (ESRI 2010) and ERDAS’ Imagine
(ERDAS 2010). We converted the data layers among
common GIS image formats and generic binary formats
using the GDAL interfaced with Python (Van Rossum
2003) and Perl (The Perl Foundation). We developed
custom programs written with Lahey/Fujitsu LF95 v.
8.1b Fortran compiler to implement the nearest-neighbor
processing, data summarization, and image generation.

2.6 Initial KNN estimation based on the FIA
data In this study, the volume prediction for a pixel

was determined using:

ŷi =
1

k

k∑
j=1

yij

where ŷi is the predicted value for pixel i; and {yij , j =
1, 2, ..., k} are the k−spectrally nearest response values
stored in the training list.

This process can be modified using a weighting factor
which is commonly based on the physical distance
between pixel iand the location of the K neighbor(s).
However, this was not implemented due to limited access
to the actual FIA plot locations. We tested the number
of near neighbors for each scene using leave-one-out
cross-validation analyses. Using the FIA training list
data as input, we generated volume estimates for K=1
to 20. In this process, we limited the nearest neighbor
selection to entries with the same composite land cover
type. Following the recommendation of McRoberts
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Figure 4: Visually assessed A-C) non-forest, D-F) sparse
forest, and G-I) closed canopy sites as they relate to
samples in the J) pseudo-Landsat image (Figure 3 and
how they appear in the 2010 color-infrared NAIP (A, D,
G), the winter TM (B, E, H), and the NDVI (C, F, I)
images.

(2002), the optimal K was selected as the value of k
that produces an RMSE (Eq. 2) no larger than 2.5% of
the minimum (RMSE value across the same range of K).

RMSE =

√∑6
i=1(yi − ŷi)2

n
(2)

where yi is the ground-observed, assumed to be true,
measurement for sample i, ŷi is the predicted value for
sample i, and n is the total number of samples.

It should be noted that the goal in optimal selection
of K is not only improving accuracy, but often it is also
preserving the co-variance between different predicted
variables while preserving the range of their predicted
values. The process of generating volume per hectare
(m3) estimates for pixel i initiated with the selection
of the K-nearest entries in the training list. Nearness
in this study refers to the Euclidean spectral distance
(ESD) and is calculated using equation 3. The process
was executed with the following steps:

1. calculate ESD from each forested pixel i to each
entry in the training list having the same composite
land cover type,

2. use Fortran’s intrinsic minval and minloc to find
the first closest neighbor in the list,

3. store the volume per hectare value associated with
the spectrally nearest entry in the training list and
mask it from the list of spectral distances,

4. repeat 2 & 3 K times, and then

5. average those samples to form the KNN-based vol-
ume per hectare (m3) estimate .

ESD =

√√√√ 6∑
i=1

(ji − ki)2 (3)

where ji is the band i value for the jth entry in the
training list and ki is the band i value for the current
pixel in the image.

An advantage of the KNN method is the ability to
make many estimates for a single location given the in-
formation available in the training list. The additional
information we stored for each pixel included mean spec-
tral distance and a blended land cover. The blended land
cover was created by storing the majority composite land
cover type. We assigned a mixed type where there was
no majority.

In step 1 of the initial estimation process, we use
the composite land cover data to influence the nearest
neighbor selection by limiting the available entries in
the training list to only those with similar cover types
(conifer, mixed, or deciduous). While the GLUT and
NLCD were the most current state and/or national scale
data sets publicly available, they were not current to the
dates of the TM used in this study and required fine-
tuning to bring them up to the current common time-
line. We transformed the late-season TM to NDVI and
generated two derivatives. The first (NDVIF ) contained
the NDVI information for all forested pixels represented
in the composite land cover dataset. The remaining non-
forested pixels were masked out. The second derivative
(NDVINF ) had NDVI information for the non-forested
pixels represented in the composite land cover and the
forested pixels were masked out. We used a series of
thresholds and visual inspections of both NDVI deriva-
tives to create a current timeline 1) forested mask, and
2) land cover layer (LCOV). We removed the areas from
the forested mask that were originally classified as a for-
est, yet through visual inspection of the NDVIF data,
were determined to be non-forested. On the other hand,
we added to the forested mask the areas we determined
to be wrongly classified as non-forest in the NDVINF

data. We assigned the forested pixels the blended land
cover label to create the LCOV layer.
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Table 5: Reclassification matrix used to combine the GLUT and NLCD land cover products.
2008 GLUT

Clear- Decid- Ever- Forested Nonforest
NLCD 2006 cut(31) uous(41) green(42) Mixed(43) Wetland(91) Wet.(93)

Deciduous(41) Ever. Decid. Mixed Mixed Decid. NA
Evergreen (42) Ever. Mixed Ever. Mixed Ever. NA

Mixed (43) Ever. Mixed Mixed Mixed Mixed NA
Evergreen (52) Ever. Mixed Ever. Mixed Ever. NA
Clearcut (71) Ever. Decid. Ever. Mixed Ever. NA
Crop (81, 82) Ever. Decid. Ever. Mixed NA NA
Wetland (90) Ever. Decid. Ever. Mixed Decid. Decid.

2.7 Mean-balancing to the FIA mean volume
per-hectare The objective of the Mean Balancing pro-
cess is to remove any potential bias in the estimated
mean by adjusting individual pixel estimates up or down
so the TM-based mean for an area, in this study a Land-
sat scene, equals the mean of the FIA plot measurements
from the same area. We implemented two balancing
methods. Scaling in the first method, we refer to it in
this paper as ordered Mean Balancing, is based on each
pixel’s Euclidean spectral distance where those cells with
large ESD values are adjusted more often. Throughout
the iterative process, pixels with the largest Euclidean
spectral distance are adjusted first. In each subsequent
pass, the ESD threshold for pixel selection and adjust-
ment is lowered to include a larger number of pixels.
Some pixels, especially those with a large ESD, may be
adjusted multiple times while it is possible others are
not adjusted at all. Each TM scene was processed sep-
arately as were the conifer, mixed, and deciduous cover
types as denoted in LCOV dataset. The protocol we
followed is as follows:

1. calculate the TM-based mean volume per hectare
(VACL) for a TM scene, include only cells at-
tributed with the current LCOV type (conifer, de-
ciduous, or mixed);

2. calculate the mean volume per hectare of the FIA
plots (VACF ) that fall within the same TM scene
and are attributed with the current LCOV type
(conifer, deciduous, or mixed);

3. select the pixels equal to or larger than the ESD
threshold, and either

(a) adjust the selected pixels by the ratio of the
maximum FIA plot volume per hectare to the
maximum estimated volume per hectare repre-
sented in this set of pixels if VACL is less than
VACF , or

(b) decrease the selected pixel values by 2.5% if
VACL is greater than VACF ;

4. recalculate VACL,

5. repeat steps 3 and 4 until VACL is within 2% of
VACF , and then

6. rescale all pixels by the ratio of VACF to VACL to
ensure the balanced mean volume per hectare pixel
estimates for area equals the FIA’s estimate from
the same area.

In the second method, pixel values were scaled propor-
tionally by the ratio of the FIA target mean, VACF , to
the TM-based mean volume per hectare, VACL. In this
paper, we refer to this approach as proportional Mean
Balancing.

2.8 Fusion of industry and initial KNN esti-
mates We demonstrate an additional improvement to
our spatially explicit inventory with the fusion of in-
formation from a high-intensity ground-based inventory
of industrial pine sites in the central Georgia, path 18,
row 37 scene. The goal of this process was to incorpo-
rate those measurements we think are highly accurate
into our TM-based volume estimates and preserve them
throughout the balancing process. Equalization was im-
plemented on a stand-by-stand basis where only the pix-
els within an inventoried stand were adjusted. Pixel es-
timates for areas outside these managed areas were not
modified. For each stand individually, we:

1. determined the mean of the initial KNN estimate
for a given stand, then

2. adjusted the initial KNN estimates within its stand
boundary by the ratio of industry and KNN means,
and

3. reset the ESD measure for each of the pixels within
the given stand boundary to zero (indicating a very
accurate estimate) and then

4. re-ran the ordered Mean Balancing routine for the
entire scene.
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By resetting the ESD measures within each stand to
zero, we reduce the likelihood, but do not eliminate the
possibility; an individual estimate will be adjusted dur-
ing the Mean Balancing process.

Assessment

We present the leave-one-out RMSE associated with
each optimal K (Fig. 5) as a measure of accuracy of
the initial KNN estimation process. Additionally, we
calculated mean absolute errors (MAE) (Eq. 4) for the
Mean Balancing results. We also present summaries of
the Mean Balancing processes for each scene for the pine
type contained in LCOV for the initial KNN estimates
and the Mean Balanced estimates.

MAE =

∑n
i=1 |ŷi − yi|

n
(4)

where yi is the ground-observed, assumed to be true,
measurement for sample i, ŷi is the predicted value for
sample i; and n is the total number of samples.

We present an assessment of the estimates generated
by the 1) initial KNN, 2) the two Mean Balancing ap-
proaches, and the 3) industry-infused and Mean Bal-
anced processes for the central-Georgia scene, path 18,
row 37. The field measurements and GIS data obtained
from our industrial partners were not used in the first
two estimation routines. Therefore, we use the RMSE
and MAE calculated across each industrial stand as an
assessment of their accuracy based on an independent,
albeit limited in terms of forest type, data source. The
industrial data is an integral part of the industry-fused
process, so we do not consider them suitable samples for
independent validation. However, we present their sum-
maries to confirm the improvement in prediction accu-
racy achieved through this process.

Finally, to demonstrate the varying results one would
attain by querying the 1) standard FIA database, the
2) initial KNN, both 3) Mean Balanced, and the 4)
industry-infused data. We present the results of a series
of queries at varying scales. We first present summaries
for Hancock County, Georgia for the conifer type. There
are 97 industrial stands, approximately 2,023 hectares,
located in the county. The final two summaries are cen-
tered at 33.3141 degrees north and 82.9368 west with a
radius of 1/2 mile (203.4 hectares) and 3.5 miles (9,967.1
hectares). There are five industry stands within the 3.5-
mile radius that encompass 83 hectares and one stand
less than 8.1 hectares in size within the 0.5-mile radius.

3 Results

The path 19, row 39 scene is located in the extreme
southwestern part of the state. The image covers ap-
proximately 74,866.9 hectares of forested land and con-
tains 69 FIA plots. The scene with the next smallest

coverage of the state, path 18, row 39, encompasses 1.2
million hectares of forested land and 339 forested FIA
plots. Due to the small number of plots and a relatively
large percentage of overlap by adjacent scenes, nearly
88%, we processed the path 19, row 39 data using K=1.
While we scaled the volume per hectare estimates to its
FIA scene mean using the same approach as the other
scenes, we used the estimates from the adjacent scenes
in the overlapping areas (path 19, row 38 and path 18,
row 39) when possible. Unless specified, the following
sections focus on the remaining 11 scenes used in this
study.

Figure 5: Root-mean squared error measures for K=1 to
K=20 for the 12 TM scenes that were generated during
the determination of the optimal K

3.1 Selection of the optimal K The leave-one-out
KNN assessment of cubic-meter volume per hectare
based on the training data revealed an initial decrease in
RMSE as the number of neighbors was increased. The
gain in accuracy continued from K=3 to K=10 and then
leveled off (Fig. 5, Tab. 6). Root-mean squared error
values for the optimal K ranged from 55.3 m3/ha 55%
of the FIA mean for path 19, row 39, to 87.2 m3/ha, or
71% of the FIA mean for path 18, row 38 (Tab. 6).

The compression of the range of initial volume per
hectare estimates is apparent in this study. Initial vol-
ume per hectare estimates assessed on the entries of the
training list data ranged from 0 to 388.6 m3/ha, less
than half of the range of the FIA measurements (Fig.
6). The KNN-derived mean for the training list entries
was 21% below the mean calculated from the FIA data,
101.7 m3/ha and 129.5 m3/ha, respectively.

The northern Georgia path 18, row 36 scene yielded
the largest RMSE (88.9 m3/ha) and the southern Geor-
gia scene, path 18, row 39, produced the smallest (56.1
m3/ha). There were approximately 9% more forested
hectares, a total of 10.6 million hectares, in LCOV
than reported by the initial composite land cover data.
There are 5.2 million hectares of conifer represented in
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Table 6: Optimum K and resulting combined-type RMSE for each TM scene used in the study.
Path / Row Optimal K RMSE (m3/ha) Relative RMSE

17 / 37 4 81.8 67%
17 / 38 5 73.8 60%
17 / 39 6 73.9 60%
18 / 36 8 88.9 73%
18 / 37 10 71.3 58%
18 / 38 8 87.2 71%
18 / 39 3 56.1 46%
19 / 36 6 74.9 61%
19 / 37 6 68.3 56%
19 / 38 5 71.9 59%
19 / 39 1 55.3 45%
20 / 36 6 67.8 55%

LCOV, 4.6 million hectares of deciduous, and 2.9 million
hectares of mixed forest type.

3.2 Model assessment The summaries shown below
are products of an assessment made simultaneously on
the training list samples compiled during the estimation
processes where the training list entries were treated as
a separate list of pixels in need of an estimate. The cover
type designations used in these summaries were assigned
by the LCOV data layer.

Initial KNN point estimates of conifer volume per
hectare (m3), were on average 22% below the 2010 com-
mon timeline FIA estimates (Tab. 7), the ordered Mean
Balanced estimates 13% below the 2010 common time-
line FIA estimates, and the proportional Mean Balanced
estimates were, on average, 26% above the 2010 com-
mon timeline FIA estimates. Minimum RMSE for the
initial KNN, 69.9 m3/ha, and both the ordered and pro-
portional Mean balanced processes, 72 m3/ha and 56.3
m3/ha, respectively, occurred in the southern Georgia
18/39 scene. However, the maximum RMSE occurred in
different scenes for each model. The maximum RMSE
and MAE for the initial KNN process occurred in the
south-central Georgia scene 18/38, 101.3 m3/ha; the ex-
treme northwestern Georgia scene 20/36 for the ordered
Mean Balancing approach, 129.9 m3/ha, and in the ex-
treme north-central Georgia scene 19/36 for the propor-
tional Mean Balancing approach, 45.9 m3/ha.

The greatest differences between the initial KNN
and both Mean Balanced processes occurred in the ex-
treme north-central Georgia scene 19/36 and the ex-
treme northwestern Georgia 20/36 scene. The ordered
Mean Balancing procedure increased the mean estimate,
assessed at each FIA sample point, by 86%, and by more
than 209% for the proportional Mean Balancing pro-
cess. The smallest difference between the initial KNN
and both Mean Balancing process occurred in the cen-

Figure 6: Histogram comparing the distributions of the
FIA and the remotely sensed estimates made during the
initial KNN process.

tral Georgia scene 18/37 with a difference of less than
2% for ordered Mean Balancing and by less than 38%
for the proportional Mean Balancing process (Tab. 7).

3.3 Scene-wide summaries Summaries of the en-
tire initial KNN and Mean Balanced estimated surfaces
follow. All forested pixels are included in these re-
sults. The cover type specifications were assigned by
the LCOV data layer.

Mean conifer volume per hectare estimates before or-
dered Mean Balancing were on average 26% lower than
the target FIA mean. Thirty-nine percent of all the
conifer-classified pixels in the state required adjustment
to attain equalization. Four scenes needed adjustments
to 100% (Tab. 8) of their conifer-classified areas, while
the other eight scenes required adjustments to 20% or
fewer. In total, 2,304,005 conifer hectares across the 12
scenes (Tab. 8) were scaled. After ordered Mean Balanc-
ing, conifer volume per hectare estimates ranged 0 m3 to
795 m3 with a mean of 115.9 m3/ha, compared to 0-395.6
m3/ha and a mean of 85.8 m3/habefore processing. All
conifer pixels were scaled during the proportional Mean
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Table 7: Comparison of mean volume estimates (m3/ha), RMSE (m3/ha), and MAE (m3/ha) for training list entries
for the: i) conifer Forest Inventory and Analysis (FIA) plot measurements; ii) KNN initial estimates; iii) ordered
Mean-Balanced estimates; and iv) proportional Mean-Balanced estimates. (MAE is mean-absolute error).

FIA KNN Mean-Balanced Proportionally Scaled
Path / Row Mean Mean RMSE MAE Mean RMSE MAE Mean RMSE MAE

17 / 37 125.5 102.2 91 65.4 100.1 108.8 79.5 145.9 74.5 58.7
17 / 38 111.3 86.7 82.3 59.6 94.3 88.9 65.7 129.2 73.2 56.7
17 / 39 97.3 72.2 74.5 57.2 81.3 87.7 68.4 115.7 65.4 53
18 / 38 150.7 106.4 101.3 78.6 125.2 129.9 107 196.8 91.1 73.9
18 / 37 124.3 107.8 87.7 64.7 108.9 95.7 70.1 148.6 71.2 57.1
18 / 38 105.5 76.5 88.8 64.2 90.6 109.2 83.3 126.2 69.9 54.1
18 / 39 101.7 82.4 69.9 51.4 70.7 72 54.5 120.8 56.3 45.3
19 / 36 138.7 68.2 100.6 74.1 126.9 128.6 103.5 211.2 115.9 94
19 / 37 125.3 95 90.8 65.9 112.1 98.8 74 155.7 74.5 59.1
19 / 38 105.2 80.9 75.8 58.4 83.5 81.4 64.8 128 60.3 47.8
19 / 39 108.2 132.5 17.9 5.1 121.2 35.3 29.7 124 43.3 36.9
20 / 36 114.8 76.4 83.5 65.1 109.7 131.5 108.3 179.5 107.5 88.2

Balancing process yielding a range of volumes from 0
m3/ha to 808 m3/ha (Tab. 9)

The initial conifer mean in the northern scene, path
19, row 36, was 34% below the FIA target (Tab. 8). In
order to raise that scene’s conifer mean to the appropri-
ate level, 100% of the conifer pixels (375,378 hectares)
had to be adjusted during the ordered Mean Balanc-
ing processes. This resulted in the range of data being
increased from 0-395.6 m3/ha to 0-795.3 m3/ha with a
mean of 1,983 m3/ha, which is equal to the FIA’s. One-
hundred percent of the data were adjusted during the
proportional Mean Balancing process which yielded the
target mean of 138.8 m3/ha and a similar range of es-
timates from 0 to 808 m3/ha (Tab. 9). However, the
standard deviation was more than twice as large as those
from the ordered mean Balancing process, 116.6 m3/ha
and 50.2 m3/ha, respectively.

3.4 Fusion of industrial data in path 18, row 37
The path 18, row 37 mean of the initial KNN-based es-
timates for conifer volume per hectare were more than
12% below the 2010 common timeline FIA estimate
(Tab. 8). After scaling, the scene-wide conifer means
were all near equal to the 18/38 FIA Target (+/- 0.2%).
The maximum conifer pixel estimate for the ordered
Mean Balanced and Industry Fused routines were both
almost twice its FIA and initial KNN counterparts and
the maximum value yielded from the proportional Mean
Balance routine was 15% larger (Tab. 10).

The mean stand volume per hectare produced by
the initial KNN estimation routine was 27% below the
mean calculated from the industry ground measure-
ments (Tab. 11) and the range of predicted stand means
was half. The ordered Mean Balancing process aver-

age was 18% below the industry’s measure with a com-
pressed range of estimates of almost 17% and the pro-
portional Mean Balancing mean 16% lower with a com-
pressed range of almost half. By design, the average
stand cubic foot volume per hectare and the industry
measures are nearly equal. While the means are equal,
the range of individual pixel estimates is 10% lower.
The initial KNN and the ordered Mean Balancing pro-
cess yielded similar RMSE measures of 92.5 m3/ha and
96.7 m3/ha, and MAE measures of 73.6 m3/ha and 78.8
m3/ha, respectively (Tab. 11), only slightly higher than
those from the proportional Mean Balanced data. The
RMSE and MAE from the industry-fused process was
nearly 60% lower, 10.7 m3/ha and 3.8 m3/ha, respec-
tively.

The scatter plots in Figure 7 reveal the weak positive
relationship between the industry observed stand’s cu-
bic foot volume and its remotely sensed estimates using
the initial KNN procedure (Fig. 7A), the proportional
Mean Balancing (Fig. 7B), the Mean Balancing routine
(Fig. 7C). Purposely through the scaling of individual
estimates within each industry stand, there is a strong
positive relationship with the industry measures and the
industry-fused estimates (Fig. 7D). The effects of the
scaling that occurred during the Mean Balancing pro-
cess (Fig. 7C) are apparent throughout the extent of
the industry measurements. The range of estimates for
the zero-volume samples (i.e. harvested sites) expanded
from 0 to just above 139.9 m3/ha (Fig. 7A) to 0 to
approximately 279.9 m3/ha (Fig. 7C).

3.5 Multi-scale queries Total conifer area reported
by the FIA and the area of conifer represented in LCOV
for Hancock County, Georgia are nearly identical (Tab.
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Table 8: Area of conifer forestland adjusted on the pixel level during the ordered Mean Balancing processes.
Initial Mean Adjusted Area Adjusted Area Adjusted Mean Max. Est.

Path / Row (% of FIA Mean) (ha) (%) (St. Dev.)(m3/ha) (m3/ha)
17 / 37 -13% 7,481.40 2% 125.5 (68.6) 637
17 / 38 -20% 78,690.80 6% 111.3 ( 66.1) 625
17 / 39 -23% 62,303.40 12% 97.3 (50.1) 381
18 / 36 -32% 162,672.80 100% 150.7 (66.0) 472
18 / 37 -12% 42,196.60 4% 124.3 (67.7) 606
18 / 38 -27% 1,182,838.10 100% 105.4 (66.9) 244
18 / 39 -39% 33,265.60 12% 101.7 (50.2) 300
19 / 36 0.34 375,378.60 100% 138.8 (50.2) 795
19 / 37 30% 132,418.10 20% 125.4 (82.8) 570
19 / 38 -23% 54,152.70 12% 105.2 (60.6) 414
19 / 39 -2% 6.5 ¡1% 108.2 (59.9) 279
20 / 36 -49% 172,600.60 100% 114.8 (82.6) 273

Table 9: Area of conifer forestland adjusted on the pixel level during the proportional Mean Balancing processes.
Initial Mean Adjusted Area Adjusted Area Adjusted Mean Max. Est.

Path / Row (% of FIA Mean) (ha) (%) (St. Dev.)(m3/ha) (m3/ha)
17 / 37 -13% 463,276 100% 125.5 (68.6) 426
17 / 38 -20% 1,394,528 100% 111.3 ( 66.1) 439
17 / 39 -23% 491,604 100% 97.3 (50.1) 330
18 / 36 -32% 158,057 100% 150.7 (66.0) 473
18 / 37 -12% 1,032,216 100% 124.3 (67.7) 360
18 / 38 -27% 1,132,081 100% 105.4 (66.9) 407
18 / 39 -39% 258,125 100% 101.7 (50.2) 290
19 / 36 -34% 339,060 100% 138.8 (50.2) 808
19 / 37 -30% 644,264 100% 125.4 (82.8) 490
19 / 38 -23% 434,758 100% 105.2 (60.6) 347
19 / 39 -2% 43,342 100% 108.2 (59.9) 280
20 / 36 -49% 146,237 100% 114.8 (82.6) 453

Table 10: Conifer volume per hectare estimates from the 2010 common timeline FIA and generated from the four
remote sensing methods for the path 18, row 37 scene.

Method MEAN (m3/ha) St. Dev. (m3/ha) Max (m3/ha)
2010 Common Timeline FIA 124 6 311

Initial KNN 110 60 311
Proportional MB 124 67 360

Ordered MB 124 68 606
Industry Fused 124 83 541

Table 11: Path 18, row 37 stand-level comparison of mean conifer volume per hectare generated from the four
estimates based on remote sensing.

Mean St. Dev. Min Max RMSE MAE
Method (m3/ha) (m3/ha) (3/ha) (m3/ha) (m3/ha) (m3/ha)
Industry 158.2 108.0 0.0 426.3 0.0 0.0

Initial KNN 115.6 46.0 2.0 211.6 92.5 73.6
Proportional MB 133.1 53.4 3.0 253.4 83.8 67.6

Ordered MB 129.4 53.9 1.6 357 96.7 78.8
Industry Fused 158.2 104.3 0.0 406.3 10.7 3.8
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Figure 7: Scatter plots reflecting the volume per hectare
(m3) estimates for each industry stand from the A) ini-
tial KNN, the B) proportional Mean Balancing, C) the
ordered Mean Balancing, and the D) industry-fused pro-
cesses.

12). The FIA reports 56,205 hectares of coniferous
forestland while LCOV represents 56,195 total conifer
hectares. Each of the remotely sensed processes yielded
a mean conifer volume per hectare larger than what the
FIA reported. The initial KNN process yields a mean
volume per hectare of 125.8 m3/ha, 17% more than the
FIA; ordered Mean Balancing estimates 133.5 m3/ha,
25% more, proportional Mean Balancing estimates 143.2
m3/ha, 34% more, and the industry-fused process yields
an estimate of 135.3 m3/ha (Tab. 12), 26% more than
the FIA. The difference between the FIA’s estimate, 213
million m3 and the remote sensing estimates for total
conifer volume ranged from 16% to 25%. The initial
KNN process yields 247 million m3, ordered Mean Bal-
ancing 262 million m3, proportional Mean Balancing 247
million m3, and the industry-fused process 266 million
m3.

The FIA reported 2,269.1 hectares (Tab. 13) of conifer
forestland area in the 3.5-mile radius query area. How-
ever, the LCOV layer reports 4,468 hectares of conifer-
classified pixels. All remotely sensed conifer volume per
hectare estimates were lower than the FIA’s reported
value. FIA reports a volume per hectare of 259.3 m3

while the TM-derived data reports a volume per hectare
of 120.3 to 146.7 m3 (Tab. 13). FIA reports no forest-
land area or volume in the half-mile query (Tab. 14).
The remotely sensed estimates in this query area ranged
from a mean conifer volume per hectare of 142.5 m3 from
the initial KNN estimate to 163.2 m3 from the propor-
tional Mean Balanced data.

4 Discussion

In the study described here we used the novel ap-
proach of Mean Balancing for removing bias from KNN
estimates based on the FIA data and industrial inven-
tory data, modeled on satellite imagery for the purpose
of redistributing the FIA pine inventory means to pixel
size areas of pine forests. We based the approach on
the rationalization for balancing an inventory to an un-
biased total presented by Iles (2009). In essence, this
approach states that any process resulting in the same
total as an unbiased estimate is itself unbiased. The
principle usefulness of this approach is fusing the large
area FIA information with other data for the purpose of
obtaining useful small area estimates while maintaining
the statistical integrity of the landscape level inventory.

Though Iles (2009) balanced on the total volume re-
ported from a large-area timber inventory, we balanced
on the means reported by the FIA, which essentially rep-
resents the same principle. In this approach, we allowed
individual pixel estimates to adjust upward or down-
ward until the remote sensing-based mean volume per
hectare (m3) equalized with the mean derived from the
FIA plot measurements and projected to a 2010 com-
mon timeline. We used two methods of balancing of
which one was indiscriminate to any variables and con-
sisted of equal scaling of all estimated values to achieve
the desired mean. The other method was based on scal-
ing each estimate proportionally to its pixel’s ESD, thus
giving more stability to better predict estimates while
scaling more the poorer estimates. In theory the later
approach seems more desirable and has strong logical
basis; however, in our example it produced less accurate
estimates for the testing data. Based on these results we
conclude that further research is need in this area to im-
prove the discriminate algorithm, because it seems that
estimates from better matched stands should be more
accurate than estimates from mismatched stands, which
would suggest that they should be changed less.

This inventory of Georgia differentiates itself from
other large-area, remote sensing-based inventories
in the northeastern United States and abroad
(McRoberts et al. 2010, Tomppo et al. 2008,
McRoberts et al. 2009) in the manner bias is addressed.
Recommendations for minimizing bias are the incorpo-
ration of a weighting factor during the nearest neigh-
bor process (Katila 2006, McRoberts 2009), general-
ization or segmentation (Hyvonen et al. 2005, Wood-
cock et al. 2001) and the careful selection of the optimal
K (McRoberts et al. 2002) and method of estimation
(Labrecque et al. 2006). We on the other hand accept
the statistical integrity of the FIA’s large-area reports
and conform our measurements to them.

Scaling estimates based solely on the ESD to attain
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Table 12: Conifer volume per hectare estimates generated from the FIA, the initial KNN, Mean Balancing, and the
industry-fused methods for Hancock County, Georgia.

Area Min Max Mean St. Dev. Volume
Method (ha) (m3/ha) (m3/ha) (m3/ha) (m3/ha) (Mil. M3)

FIA Db (Hancock) 56,205 NA NA 107.3 NA 14.9
Initial KNN 56,196 0.0 289.2 125.8 53.7 17.3

Proportional MB 56,196 0.0 329.9 143.2 61.5 18.9
Ordered MB 56,196 0.1 594.1 133.5 60.2 18.3

Industry-fused 56,196 0.1 590.5 135.3 63.7 18.6

Table 13: Query results from the 3.5-mile radius query to the FIA database, the initial KNN, Mean Balancing, and
the industry-fused methods for the conifer type.

Area Min Max Mean St. Dev. Volume
Method (ha) (m3/ha) (m3/ha) (m3/ha) (m3/ha) (Mil. M3)

FIA Db Query 2,269 NA NA 259.3 NA 1.5
Initial KNN 4,468 0.1 520 129.4 65.8 1.4

Proportional MB 4,468 0.0 355.3 144.8 63.7 1.6
Ordered MB 4,468 0.0 266.5 120.3 56.7 1.3

Industry-fused 4,468 0.1 538.4 130.2 71.4 1.4

Table 14: Query results from the 0.5-mile radius query to the FIA database, the initial KNN, Mean Balancing, and
the industry-fused methods for the conifer type.

Area Min Max Mean St. Dev. Volume
Method (ha) (33/ha) (m3/ha) (m3/ha) (m3/ha) (Thousand M3)

FIA Db Query 0 NA NA 0 NA 0
Initial KNN 121 4.5 253.4 142.5 52.3 42.5

Proportional MB 121 5.1 289.0 163.2 59.3 48.8
Ordered MB 121 6.4 462.4 147.2 55.6 43.9

Industry-fused 121 6.4 538.4 157.6 76.5 47.1

equalization decreased the local accuracy of our stand-
level volume per hectare (m3) estimates as seen in figures
7A and 7B. Root-mean squared error decreased by 4%
and MAE by 7% (Tab. 10) when compared to the ini-
tial KNN estimates. However, at a more suitable sum-
mary unit for the FIA, scene-level summaries of mean
volume per hectare estimates from the balanced models
were near equal. Furthermore, after incorporating the
small area forest inventory, our local accuracy increased
by nearly 2.5 times, while maintaining large area per
hectare conformity with the FIA (Tab. 9).

Several issues requiring further assessment were iden-
tified throughout this research. We did not explore bal-
ancing to the total volume. Our rationalization for us-
ing the mean as the target is the fact that volume per
hectare is invariant to total area. Total volume, on the
other hand, is a product of forestland area and, un-
like volume per hectare, fluctuates as that area changes.
However, total volume is the measure the FIA reports,
so the issue should be addressed.

Second, there is room for more complete utilization of

the small-area measurements. This study only leveraged
the information from our industry partners within their
stand boundaries. The high resolution ground informa-
tion, however, can be used for estimates across the en-
tire scene. For instance, Sivanpillai (2006) used similar
high resolution forest measurements in conjunction with
remote sensing and multivariate regression to estimate
age and density for a site in eastern Texas and Meng
(Meng et al. 2009b) used high resolution forest informa-
tion and satellite imagery with geostatistical techniques
for a large-area forest inventory.

Natural resource managers have a growing amount
of data available for incorporation into their decision-
making and management processes. Regardless of the
source, whether it is the product of a small forest inven-
tory designed for a locally accurate estimate, a report
based on sparsely located plots adequate for large area
approximations, or even if it is a bit of information your
foreman ’knows’ is true and, for that reason alone, must
be included in the analysis, they all contain useful bits
of information. We used the total balancing concept to
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assimilate those seemingly unrelated, yet useful bits of
information into our high resolution, spatially explicit
inventory for the state of Georgia. The inventory re-
tains the FIA’s unbiased nature across large areas for
volume per hectare (m3), however, unlike the FIA, our
inventory also maintains the local accuracies provided
by our forest industry partners.
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