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Abstract. This study applied a geostatistical approach to quantify above-ground biomass (AGB) of
the Labanan Concession Forest in East Kalimantan, Indonesia. Forest inventory data collected via
line-plot sampling were converted to AGB, and two approaches of estimating the spatial distributions
of biomass, the global and stratified approaches, were compared. The global approach does not take
local varying structures into account, whereas the stratified approach accounts for the heterogeneity
of land cover types. Thus, AGBs estimated from each land cover type were pooled for the stratified
approach. Ordinary kriging was performed to predict AGB at unsampled locations. The total estimates
of AGB and root mean squared cross-validation errors (RMSCVE) for the global and stratified
methods were 13,512,392.2 tons (161.92 ton/ha) and 13,607,205.5 tons (163.05 ton/ha), respectively,
for AGB (0.7% difference) and 81.0 ton/ha and 81.2 ton/ha, respectively, for RMSCVE. Considering
the different environmental conditions for each land cover type, the stratified method was expected to
better capture the spatial structure particular to each land cover type, leading to more accurate es-
timates of AGB. However, the results suggest the degree of accuracy for the two methods was nearly similar.

Keywords: Spatial dependency, Line-plot sampling, Landscape heterogeneity, Ordinary kriging.

1 Introduction
Quantification of forest biomass is essential to assess

forest growth and productivity. Quantification of for-
est biomass is also important to estimate carbon stored
in a forest because carbon comprises about half of the
dry biomass (Brown 1997). Due to the significant role
of forests involved in the global carbon cycle (Pan et
al. 2011), precise measurements of forest biomass is cur-
rently one of the most critical issues in the research of
global climate change and carbon flux and sequestration
in forests (Tanase et al. 2014), and quantifying forest
biomass has gained a fair amount of interest over the
past few decades (Usuga et al. 2010). Since field data of
below-ground biomass cannot be collected easily, above-
ground biomass (AGB) has usually been the only part
of the carbon entity that has been estimated (Lu 2006).

So far, the estimation of AGB has been derived from
techniques based on field measurements, remote sens-
ing, and Geographic Information System (GIS) analysis

(Lu 2006; Wijaya et al. 2010a). Field measurements are
obtained directly by felling trees and cutting them into
sections, and then the parts are oven dried and weighed
to derive estimate of AGB (Brown 1997). This method
is known to be the most accurate way for estimating
AGB by far (Djomo et al. 2010). Indirect tree measure-
ments of AGB such as stem diameter or total height
are often correlated to develop allometric equations for
AGB estimation (Pearson et al. 2007; Basuki et al. 2009;
Djomo et al. 2010; Blujdea et al. 2012; Rutishauser et
al. 2013) that can then be used in subsequent estima-
tions. In estimating AGB over a large region, a remote
sensing method is useful, and is especially effective in
assessing AGB in inaccessible areas where data collection
is difficult (Lu 2006). Airborne small-footprint Light
Detection and Ranging (LiDAR) is currently being eval-
uated as the most promising tool for estimating spatial
distributions of AGB over large areas (Laurin et al. 2014).
Environmental measurements such as tree height, Nor-
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malized Difference Vegetation Index (NDVI), and Leaf
Area Index (LAI) obtained from remote sensing data
are correlated with ground measurements of AGB since
direct measurements of AGB are not available through
remote sensing techniques (Saatchi et al. 2007; Basuki et
al. 2009; Tsui et al. 2013). A GIS approach to estimate
AGB is based on superimposing maps of supplementary
information such as elevation, slope, soil, precipitation,
and land cover into the GIS software (Lu 2006; Wijaya
et al. 2010a) and then using this information to aid in
AGB estimation.

In this work, a geostatistical approach was applied
to estimate the spatial distribution of AGB over a forest
region. Unlike the approaches aforementioned, geostatis-
tics treats the observed data in the context of their
locations by looking at the relationship in terms of dis-
tance between each point. Geostatistics takes stochastic
assumptions on the observed dataset. The stochastic
approach has the advantage of estimating the errors for
the prediction. Spatial variation is assessed through var-
iograms. Variograms model spatial dependency among
the data as a function of distance. Based on the model
of the variogram, predictions are made. The prediction
is referred to as kriging in geostatistics (Ripley 1981;
Webster and Oliver 2007).

Geostatistical methods have been widely used in the
research of forestry to analyze spatial distribution and
mapping of AGB over large areas. Two different ap-
proaches to derive spatial structures of AGB were applied
according to the availability of secondary information,
of which a lot of work using secondary information can
be found in remote sensing applications. With available
ground based AGB data, the deterministic part of AGB
was modeled using remote sensing data (i.e., LiDAR, spec-
tral bands, vegetation indices, satellite images, etc.) with
which environmental variables are often combined (i.e.,
soils, vegetation type, elevation, etc.). After removing
the deterministic part from AGB, the spatial structure
of the residuals is assessed for kriging. Different kriging
techniques have been applied including ordinary kriging
regression kriging, co-kriging, and universal kriging (De
Jong et al. 2003; Freeman and Moisen 2007; Sales et
al. 2007; Castillo-Santiago et al. 2013; Lamsal et al. 2012;
Tsui et al. 2013; Zhang et al. 2014; Galeana-Pizaña et
al. 2014). On the contrary, in cases without secondary
information, some research directly explored spatially
varying structures of AGB. Kriging estimates of AGB
were derived from the model of spatial dependency of
AGB (Hero et al. 2013).

The objective of this study was to explore the struc-
ture of spatial continuity of AGB collected by line-plot
sampling and estimate the total biomass in an Indone-
sian forest applying a geostatistical approach. Line-plot
sampling is known to efficiently reflect varying structures

of land cover types (Tiryana 2005), which makes it useful
for capturing spatial structures of collected data. Two
estimates of AGB, global and pooled, were assessed. The
global estimate uses the entire dataset for prediction
without considering the varying local structures (land
cover types). On the other hand, the pooled estimate
accounts for the different local structures and the AGB
assessment of each separate stratum is added to calculate
the total AGB. Finally, a cross validation was performed
to check the accuracy of the kriging estimates.

2 Ordinary Kriging

Let us define Z(s) as a realized value from a spa-
tial stochastic process Z(�), where s is the location of
variable Z(s) in domain D of R2. The variation and con-
tinuity of realized single values from a spatial stochastic
process Z(s) is characterized through an experimental
variogram. An experimental variogram Υ̂(h) estimates
spatial dependence and is quantified by the average dif-
ference between the pairs of sampled values according to
their lag distance.

Υ̂ (Hk) =
1

2nk

nk∑
i=1

(Z (si + h)− Z(si))
2

where:

nk is the numbers of pairs of samples separated apart
by the length of vector h (h∈Hk); and

si is the location where variable Z(si) is sampled.

A typical plot of experimental variogram has an in-
creasing trend and reaches an asymptote as the length of
vector h increases (Wackernagel 2003). The maximum
value of the asymptote is called the sill and the range is
the lag distance at which sill is reached. The discontinu-
ity behavior at microscale near the origin, where h = 0, is
called the nugget effect. The discontinuity indicates dras-
tic changes of sample values at very short lag distances.
Although the estimated value of experimental variogram
must be 0 at h = 0, dissimilarity of sampled values at
very short lag distances results in discontinuity at h = 0,
in other words, non-zero positive value at h = 0 (Isaaks
and Srivastava 1989). After the experimental variogram
is estimated, the theoretical variogram is fitted. The
theoretical variogram ensures that the covariance of the
kriged estimate, which is a linear weighted sum of sample
values, is non-negative (Schabenberger and Pierce 2002;
Wackernagel 2003).

If spatial dependency of sample values can be veri-
fied by an appropriate variogram model, prediction of
attribute values at unsampled locations can be made
based on the variogram model. The most broadly used
geostatistical interpolation technique is ordinary kriging
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(Webster and Oliver 2007). Ordinary kriging is applied
when the spatial processes are second-order or intrinsic
stationary (Schabenberger and Pierce 2002). If the mean
E[Z(s)] = u is constant and the covariance function is
dependent only on the distance separated by h between
the two spatial points, C(h) = E[(Z(s) – u)(Z(s+ h) –
u)], the spatial stochastic process is said to be second-
order stationary (Kitanidis 1997; Schabenberger and
Pierce 2002; Montes and Ledo 2010), whereas the intrin-
sic stationarity is defined by the mean and variances of
the differences of Z(s) – Z(s+ h).

In kriging, an unknown value of Z0 = Z(s0) is esti-
mated by weighted linear average of observations from
other measured locations s1, s2, . . . , sn, where λis are
kriging weights such that

Ẑ0 =

n∑
i=1

λiZ(si)

and in ordinary kriging, λis should satisfy the follow-

ing two conditions: (1) unbiasedness where
n∑
i=1

λi = 1

so that the expectation of estimation error is zero and
unbiasedness is guaranteed, and (2) minimum variance
of the estimation error (Isaaks and Srivastava 1989; Ki-
tanidis 1997).

3 Materials and Methods

3.1 Study area This study analyzed the data col-
lected from Labanan concession forest, the district of Be-
rau East Kalimantan Indonesia (Figure 1). The Labanan
concession forest is located near the equator within the
geographic coordinates of 1◦45’ to 2◦10’ N and 116◦55’
to 117◦20’ E. The size is approximately 83,000 ha. The
Labanan concession forest is situated in the interior land
of coastal swamps and has diverse geographical and to-
pographical features comprising of plains, slopes, steeps,
and complex landforms with elevations ranging from 50
to 650 m. The landscape is characterized by aggregates
of high hills and mountains sporadically spread across
fluctuating plain surfaces. The forest type of the La-
banan concession forest is a mixed lowland dipterocarp
forest and categorized as a tropical moist forest. The
temperature ranges from 23-33◦C with 26◦C on average
and the mean annual rainfall is 2,000 mm. The Labanan
concession forest is operated by PT Inhutani I, a state
owned company, and selective logging practices have
been prevalent in the area since the 1970’s (Wijaya et
al. 2010a; Wijaya et al. 2010b)

3.2 Data and sampling plot descriptions Diam-
eter at Breast Height (DBH) data of dipterocarp species
collected from 1,460 sampling plots distributed across 16

line-plots during April 1997 and January 1998 were used.
A total of 13,050 trees with DBH ranging from 10 to
210 cm were measured (Wijaya et al. 2010a). Line-plot
sampling was conducted in the direction of northwest
135◦ (Tiryana 2005). In each of the sixteen line-plots,
plots were established at a distance between 60 m and
225 m with most of the plots about 100 m apart. The
perpendicular distances between line-plots were approxi-
mately 2,000 m to 6,000 m apart averaging 5,000 m. The
plot is a nested design and comprised of three levels of
circular sub-plots, 0.125 ha for DBH >50 cm (radius of
19.95 m), 0.04 ha for DBH 20-49 cm (radius of 11.28
m), and 0.0125 ha for DBH 10-19 cm (radius of 6.31
m) with coordinates collected in the center of each plot
(Figure 2). In addition to the DBH data, the land cover
type of each plot was assessed and recorded. In total,
eight land cover types were associated with the line-plots.
A map of the concession area classified by land cover
type is also available in a shape file format. There are
four more land cover types recorded in addition to the
eight land cover types associated with the line-plots, thus
totaling 12 land cover types available in a shape file
format. The land cover type data were obtained from
Landsat Thematic-Mapper (TM) multi-spectral satellite
images. The images were geometrically corrected and
rectified with a 1:25,000 hydrology map to match the
UTM 50 grid. The raw image was first enhanced with
a contrast stretching, and then the enhanced image was
classified into different land cover types based on visual
interpretations, from which both textural and spectral
features could be evaluated. For the verification, field vis-
its were conducted, based on which the classification was
later updated. The classified information of land cover
types is described in Table 1 (Berau Forest Management
Project 2001).

3.3 Derivation of AGB data An allometric equa-
tion based on DBH (cm) was used to calculate AGB.
The equation was developed by harvesting and destruc-
tively sampling a total of 40 trees from 28 genera with
DBH varying from 6 to 68.9 cm from tropical lowland
dipterocarp forests (Samalca 2007; Wijaya et al. 2010a).

AGB = exp(−1.2495 + 2.3109× ln(DBH))

where the unit of AGB is in kg. Every measured tree
in each plot was estimated and the unit of AGB was
converted from a kg to a ton per hectare (ton/ha) basis
to balance the scale for each tree. Then every tree in
the plot was added up to represent one value for each
plot. Therefore, the analysis was conducted at the plot
level with 1,460 observations, which is the total number
of sampling plots.
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Figure 1: Map of Labanan concession forest in East Kalimantan, Indonesia by land cover and line-plots. The letters
are land cover type abbreviations, and they are described in Table 1.

Figure 2: Nested plot design used for sampling at each
plot.

3.4 Global vs. stratified method Two different
approaches were applied to estimate the spatial distribu-
tion of AGB: global and stratified. The global method
assumes a single correlation structure throughout the
whole domain and uses all line-plot data, whereas the
stratified method separately treats the data according
to their land cover type. The stratified method assumes
that each stratified domain will have a spatial process

particular to each stratum. The total AGB for the strati-
fied method should be pooled based on the AGB estimate
for each land cover type. However, the basic approaches
for modeling the variograms and kriging are the same for
both methods following the usual steps for geostatistical
approach.

3.4.1 Variogram modeling Experimental variograms
were only assessed in the directional angle of 135◦ since
the distances among line-plots (approximately 2,000 m
to 6,000 m apart averaging 5,000 m) were much larger
than the distances between each sampling plot within
each line-plot (ranging 60-225 m, about 100 m in av-
erage). The original sample values were square root
transformed to normality using a Box-Cox transforma-
tion (Zλ – 1) / λ, where Z is the original measurements
and λ = 0.5 for a square root transformation, which was
later back-transformed to the original scale after krig-
ing. An estimate of simple back-transformation is known
to be unbiased (Berthouex and Brown 2002). Detecting
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Table 1: Measurements and descriptions for each land cover type. As noted, the last four land covers (B, LM, LOG,
SV) are only available as shape file layers and not used in the analysis (Berau Forest Management Project 2001).

Land
cover

Mean
DBH
(cm/ha)

Mean
biomass
(ton/ha)

Number
of
plots

Description

Line-
plots

A 17.4 124.2 37 A: agriculture or loading. Traces of developments along roads or
rivers.

LDB 20.3 161.8 238 L: logged over forest, D: dense structure, B: brown colors. Logging
intensity & period: low & not available.

LDG 20.6 122.7 250 L: logged over forest, D: dense structure, G: green colors. Logging
intensity & period: medium & recent.

LDY 19.6 168.0 451 L: logged over forest, D: dense structure, Y: yellow colors. Logging
intensity & period: high & recent.

LOY 19.1 87.7 21 L: logged over forest, O: open structure, Y: yellow colors. Logging
intensity & period: very high & not available. Heights of existing
vegetation lower than 10 m.

LVB 22.0 177.3 270 L: logged over forest, V: very dense structure, B: brown colors.
Logging intensity & period: low & not available.

LVD 21.6 220.7 173 L: logged over forest, V: very dense structure, D: dark brown. No
evidence of logging activities.

LVG 20.0 345.5 20 L: logged over forest, V: very dense structure, G: green colors.
Logging intensity & period: medium & recent.

Layers B – – – B: Bare soil. Assumed to be agricultural fields.
LM – – – L: logged over forest, M: mixed density and colors.
LOG – – – L: logged over forest, O: open structure, G: green colors. Logging

intensity & period: very high & not available. Heights of existing
vegetation lower than 15 m.

SV – – – S: Swamp forest, V: very dense structure. No evidence of logging
activities.

Note: Brown colors (slightly logged), dark brown colors (very dense forest structure), green colors (moderately logged), and yellow
colors (very heavily logged) reflect variation in the dominant colors besides red pixels (vegetation) from the satellite imagery. The
satellite image was enhanced by contrast stretching and the colors are closely related to the stretching.

anisotropy was not possible due to the fact that line-plots
were aligned in one direction. Webster and Oliver (2007)
suggest three sampling directions at minimum to detect
anisotropy in line-plot sampling. The lag interval was
set to 1,000 m for the global method and 500 m for the
stratified method except for LVG which was set to 205 m
and the maximum lag distance of LVG was also confined
to 3,000 m since the area for estimation was smaller than
the others. Lag intervals were determined as such to
estimate long range predictions although the plots were
systematically collected at the average distance of 100
m along line-plots. Otherwise, predictions may not be
continuous over long ranges if short range correlation
is estimated (Goovaerts 1997). In our case, predictions
between line-plot distances, which are approximately
5,000 m apart, may not show smooth transitions. The
theoretical variogram model was fitted using weighted
least squares, maximum likelihood (ML), and restricted

maximum likelihood (REML). The best fitted variogram
model was selected depending on how well range pa-
rameters and trends after reaching an asymptote were
realistically fitted considering the size of the study area
and each land cover type among the three methods.

3.4.2 Kriging Ordinary kriging was performed. Or-
dinary kriging was selected since there was no prior
information on the mean. A size of 100 m x 100 m grid
was created since the unit was based on ton/ha and then
the prediction was made. Kriging was conducted using a
global neighborhood structure. That is, the whole line-
plot dataset for the global method and all data confined
to each land cover type for the stratified method are
considered as neighbors for kriging. The global neigh-
borhood structure was selected to avoid discontinuity
of predictions resulting from the line-plot structure of
data arrangements. The predicted kriging estimates show
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Table 2: Theoretical variogram models by global and stratified methods (WLS: weighted least squares, REML:
restricted maximum likelihood).

Land cover Variogram model Parameter estimation method

Global All sph: 35.74 + 13.73

[
3
2

(
|h|

8495.29

)
− 1

2

(
|h|

8495.29

)3]
WLS

Stratified LDB exp: 30.33 + 13.12
[
1− exp

(
− |h|

5405.34

)]
REML

LDG exp: 26.81 + 11.35
[
1− exp

(
− |h|

7568.27

)]
WLS

LDY sph: 47.01 + 5.02

[
3
2

(
|h|

4324.02

)
− 1

2

(
|h|

4324.02

)3]
REML

LVB sph: 24.42 + 11.65

[
3
2

(
|h|

3174.15

)
− 1

2

(
|h|

3174.15

)3]
WLS

LVD exp: 37.41 + 16.17
[
1− exp

(
− |h|

4540.57

)]
REML

LVG sph: 21.13 + 10.94

[
3
2

(
|h|

1396.20

)
− 1

2

(
|h|

1396.20

)3]
REML

Note: spherical (sph) model γ (h) = c0 + c1

[
3
2

(
|h|
a

)
− 1

2

(
|h|
a

)3]
if 0 <|h| <a, and γ (h) = c0 + c1 if |h| ≥ a, and exponential (exp)

model γ (h) = c0 + c1
[
1− exp

(
− |h|

a

)]
, where c0: nugget, c1: sill, a: range, and h: lag.

multi-layered structures perpendicular to each line-plot
if the number of neighbors is limited, since the distances
between each plot, which are much smaller than the dis-
tances between each line-plot strongly affects predictions.
After kriging, kriging estimates of AGB were clipped to
the boundary of the concession area for the global method
and each land cover type for the stratified method. The
associated standard deviations of kriging estimates are
also presented.

3.5 Validation The two kriging estimates were com-
pared by applying “leaving-one-out cross-validation” (Ribeiro
and Diggle 2001), a validation method that deletes one
sample data in sequence from the dataset and then mak-
ing a prediction at the removed location with n – 1
remaining sample data. This procedure is conducted
until every sample data location is estimated (Wacker-
nagel 2003). We applied the root mean squared cross-
validation errors (RMSCVE) approach for the perfor-
mance comparison of the two kriging estimates

RMSCVE =

√√√√ n∑
i=1

[
Z (si)− Ẑ(si)

]2
n

where Ẑ(si) is the estimated value at location si.
The variogram analysis and kriging was conducted

using the geoR package (Ribeiro and Diggle 2001) of the
statistical software R (R Core Team 2014). ArcMap 10.2

was used for clipping kriging estimates exported from R
and map production (ESRI 2013).

4 Results and Discussion

4.1 Variogram models Fitted variogram models
and how parameters for the models were estimated are
provided in Table 2. Spherical or exponential variogram
models, which are mostly applied in the ecological studies
(Fortin and Dale 2005), were selected to fit linear trends
at short lag distances (Isaaks and Srivastava 1989), and
one of the two models was chosen depending on the
trends after reaching asymptote. High nugget effects
are due to fluctuations of different adjacent values of
biomass along line-plots, or uncertainties from the AGB
equation. The AGB equation was developed from only
a small number of samples, which may have influenced
the precision of AGB leading to high values of nuggets
in the variograms. Using plot level values of AGB, of
which AGB values of individual trees were added up to
represent one value for each plot, in the analysis may
have also affected estimating small scale variation leading
to high nugget effects. In addition, the deviation from
typical patterns of experimental variograms, especially
for the variograms for the stratified method, may be due
to the uncertainties and irregularities in the AGB data
stemming from model development. For land cover LDB
and LDY, variograms were selected depending on the
range parameters estimated and the accounted increas-
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Table 3: Estimated total biomass from kriging.

Kriging estimates of biomass (ton)
Land cover Global Stratified Difference: Stratified – Global (ton) Percentage difference (%)

LDB 2,807,097.3 2,889,151.5 82,054.2 2.9
LDG 1,744,102.7 1,589,901.3 -154,201.4 9.3
LDY 3,109,625.6 3,137,919.9 28,294.3 0.9
LVB 3,283,258.6 3,302,659.1 19,400.5 0.6
LVD 1,563,045.2 1,679,084.0 116,038.8 7.2
LVG 22,804.7 26,031.6 3,226.9 13.2
Others 982,458.1 982,458.1 – –
Total 13,512,392.2 13,607,205.5 94,813.3 0.7

Note: Others land cover class includes land cover A, B, LM, LOG, LOY, and SV.

ing trends at short lag distances. Graphs of global and
stratified variogram models are presented in Figure 3 and
4.

Figure 3: Global variogram using all land cover types
combined. Experimental and theoretical variograms are
depicted as open dots and a full line, respectively.

One thing to note is that the variograms for line-
plot data of land cover A and LOY were not analyzed.
Land cover A did not have an appropriate experimental
variogram model for a theoretical variogram model, and
in land cover LOY, the shape of map of the land cover
was not suitable for the line-plot data to make predictions

within the land cover (refer to Figure 1). In other words,
the line-plot data of LOY was not properly arranged
within the land cover for kriging. How land cover A and
LOY were treated is explained in detail in the following
section.

4.2 Kriging estimates and estimation variances
The total AGB kriging estimates of the global and strat-

ified methods were 13,512,392.2 (161.92 ton/ha) and
13,607,205.5 tons (163.05 ton/ha), respectively. The
stratified method had a larger estimate, of which the dif-
ference between the two estimates is 94,813.3 tons (0.7%
difference in the estimates). Stratified method had larger
estimates for each land cover type except for the land
cover LDG. Lower kriging estimates of land cover LDG
may be the result of the LDG data itself. The smaller
mean value of AGB for land cover LDG suggests that
the actual biomass measurements are lower compared
to the other land covers. The lower global estimate is
probably due to the number of weights assigned for krig-
ing each grid (recall that global neighborhood is applied
and the number of neighbors is 1,460). The weights
of nearest line-plot data to each target grid for kriging
may have been smoothed out because of the number of
neighbors. The nearest weights account for the greatest
portion of the total weight (Webster and Oliver 2007).
As mentioned previously, land cover A and LOY were
not individually analyzed. Land cover A and LOY were
included together within the category others, of which
line-plot data of land cover were not available but only
the layers of shape files (B, LM, LOG, SV). The estimate
of category others is subtracted value of the other land
covers from the total estimate of global method (Table
3).

Figure 5 and 6 show the maps of total AGB kriging
estimates and standard deviation of the estimates of
global and stratified methods. The kriging estimates
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Figure 4: Stratified variograms. Experimental and theoretical variograms are depicted as open dots and full lines,
respectively. Note the different maximum lag distances fitted to LVB (7,500 m), LVD (8,000 m), and LVG (3,000 m).

ranged from 81.3 ton/ha (LVG) to 342.1 ton/ha (LVD)
for the global method, and from 80.8 ton/ha (LDG)
to 360.3 ton/ha (LVG) for the stratified method. The
spatial distribution of AGB kriging estimates were largely
affected by the arrangement of the line-plots, as indicated
by Figures 5 and 6. Although there were indications of
logging activities along the roads and near villages within
the site, where low densities of AGB can be observed,
incorporating specific features of the landscape into the
kriging estimates of AGB was not possible due to the
lack of data. The standard deviations of the estimate
are small close to the line-plots and become larger as
the distance increases away from the line-plots. It can
be observed that standard deviations are also large in
regions where kriging estimates are large. This is due to

the transformation of the original data using a square root
in the analysis, where λ = 0.5 for Box-Cox transformation
in our case (Diggle and Ribeiro 2007). Note that kriging
estimates and standard deviation are discontinuous by
each land cover type in the map of the stratified method.

4.3 Validation Assessing accuracy of kriging esti-
mates through cross-validation had similar results for
both methods. The RMSCVE for the global and the
stratified methods were 81.0 ton/ha and 81.2 ton/ha each.
Land cover class others was excluded in the calculation.
By each land cover type, land cover LDG and LVG of
stratified method had larger RMSCVE than the global
method. With more available information accounted
for, it was expected that the stratified method, by cap-
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Figure 5: Maps of kriging estimates of AGB (left) and associated standard deviation (right) of the global method.

Figure 6: Maps of kriging estimates of AGB (left) and associated standard deviation (right) of the stratified method.
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turing spatial structures particular to each land cover
type, would exhibit more accurate result than the global
method. However, the accuracy of both methods was
actually largely affected by high nuggets in the predic-
tion, as suggested by associated standard deviations of
predictions.

5 Conclusions

This study estimated above-ground biomass (AGB) of
Labanan concession forest in Indonesian using two differ-
ent kriging approaches: a global method and a stratified
method. The stratified method had a larger estimate
of total biomass over the area by 95,000 tons (0.7% dif-
ference). By evaluating the accuracy of AGB estimates
by cross-validation, it was difficult to conclude that the
one method has an advantage over the other method.
Standard deviations associated with kriging estimates
were also relatively high due to high nugget effects for
both methods. Nugget effects may be reduced by devel-
oping a more precise model of AGB so that measurement
error can be reduced, or increasing sampling intensity by
establishing more plots between each sampling line to
better estimate spatial structures.

For a better assessment of accuracy in the estimates,
a more realistic approach would be comparing estimates
obtained from different methods such as remote sens-
ing, or more extensive collection of data from ground
measurements. Depending on the validation criteria for
comparing true and estimated values, non-geostatistical
methods could yield better estimates of AGB. For exam-
ple, Freeman and Moisen (2007) applied a geostatistical
approach to improve the initial estimates of AGB assessed
from nonparametric methods with kriging residuals but
found no noticeable improvement in minimizing mean
squared error (MSE). Zhang et al. (2014) showed that a
non-geostatistical multiple regression model (R2 = 0.60)
had better estimates of AGB than the kriging method
(R2 = 0.29). The suggested nonparametric and multiple
regression models in the two examples were estimated
using remote sensing data and environmental variables.
Therefore, it is advisable to apply both geostatistical and
non-geostatistical methods especially when AGB can be
modeled by secondary information.

Finally, the geostatistical approach may be one of the
most useful techniques in the aspect of data requirements
and cost efficiency to estimate AGB over a large region.
Required information are ground based AGB estimates
and their associated locational data. To apply this geo-
statistical approach, it is important to check if the spatial
process of the region of interest is stationary and has a
proper model of spatial dependency for prediction.
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