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Abstract. In this study, we extended the spatial weight matrix defined by Getis and Aldstadt (2004)
to a more general case to map the distribution of Rosa multiflora, an invasive shrub, across the Upper
Midwest counties in a spatial lag model (SLM) context. Both the simulation study and the application to
the invasion data of invasive Rosa multiflora collected in 2005–2006 proved that the modified spatial weight
matrix outperforms its original case and the contiguity- and nearest distance- based spatial weight matrices
in diagnostic statistics and resultant invasion maps. The geographical distribution of Rosa multiflora in
the Upper Midwest was significantly associated with latitude; local clusters (groups of counties) of high
abundance/presence of Rosa multiflora were significantly determined by TRPF (a ratio of road density to
percentage of forest cover at the county level), a variable reflecting the intensity of human disturbance.
Both the multiple linear regression model and the SLM models with the original spatial weight matrix and
contiguity- and nearest distance- based spatial weight matrices incorporated tended to underestimate the
effect of forest type (community) on multiflora rose. As a conclusion, the SLM model incorporating the
modified spatial weight matrix has potential applications in mapping spatial data with strong clustering
patterns and estimating spatial autocorrelation structure and covariate effects in ecological studies.
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1 Introduction

The invasion and spread of non-native invasive plants
(NNIPs) into natural systems is an ecological phe-
nomenon characterized by spatial autocorrelation across
a set of spatial scales and organizational levels (Vermeij
1996). Application of spatial models to map patterns of
NNIPs and to quantify contributing factors is of theoreti-
cal and applied importance to the monitoring and control
of NNIPs. Spatial weight matrices have been used in
regression models to account for autocorrelation in data
for scientific inferences (e.g., Legendre 1993, Fortin et al.
2006, Kissling and Carl 2008, Zhang et al. 2005, 2009,
Lu and Zhang 2010, 2011). Essentially, the purpose of
spatial weight matrices is to define the spatial autocor-
relation structure of underlying bioecological processes
such as the spread of NNIPs across a landscape. Mis-
specification of spatial autocorrelation usually has two
consequences:

1. the estimation of coefficient variances has a down-
ward bias, which results in an inflated type-I error
and incorrect inferences; and

2. the estimation of parameters in statistical models is
incorrect and results in the wrong interpretation of
the environmental variables (Anselin and Bera 1998,
Keitt et al. 2002, Haining 2003).

Thus, the choice of a spatial weight matrix is critical for
spatial regression models.

It is still a challenge as there are no specific guidelines
or schemes for the selection of spatial weight matrices.
Stakhovych and Bijmolt (2009) summarized the litera-
ture concerning the choice of spatial weight matrices into
three avenues of investigation. First, the most popular
approach is distance- or neighborhood-related, such as
spatial contiguity, inverse distance raised to a certain
power, n-nearest neighbors, share of common boundaries,
ranked distance, and centroids (Anselin and Bera 1998,
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Waller and Gotway 2004). Anselin (1988) argued that
spatial weight matrices should be exogenous and should
be based on theoretical assumptions on the spatial struc-
ture. However, this approach has its limitations: the
spatial weight matrix may not reflect the real spatial
structure; and specification of the matrix is model-based.
Second, specification of spatial weight matrices is model-
based. LeSage and Parent (2007) and Holloway and La-
par (2007) used the Bayesian model to choose the spatial
weight matrix. Kostov (2010) used the component-wise
model boosting algorithm (Buhlmann 2006) when deal-
ing with the selection of spatial weight matrices. The
limitation of the model-based approach is the large num-
ber of potential spatial weight matrices and relatively
limited computational capability, especially when the
number of observations is large. Third, specification of
spatial weight matrices is data-driven. Researchers con-
struct spatial weight matrices based on the extracted
information about the spatial relationships from existing
data (Getis and Aldstadt 2004). Getis and Aldstadt
(2004) constructed a spatial weight matrix by using the
local spatial statistic Getis-Ord G∗i (d). Subsequently,
Aldstadt and Getis (2006) used a sophisticated algorithm
to construct a spatial weight matrix that depended on
the local spatial statistic Getis-Ord G∗i and identified the
shape of spatial clusters.

Getis and Aldstadt (2004) found that the spatial weight
matrix based on the local spatial statistic performs better
than spatial weight matrices based on contiguity, inverse
distance, or semi-variance model according to the Akaike
Information Criterion (AIC) (Akaike 1974). They at-
tributed these results to the local adaptive nature of
this spatial weight matrix. However, this weight matrix
is not directly related to the distance even though the
local spatial statistic Getis-Ord G∗i (d) is implicitly re-
lated to the distance. According to Tobler’s first law
(Tobler 1970), the inverse distance is used to weight the
local spatial statistic G∗i (d) in this study such that the
modified spatial weight matrix is explicitly related to
the distance while maintaining its local adaptive nature.
Then a natural and immediate question is: Which matrix
will perform best?

The major objective of this study is 1) to modify the
spatial weight matrix defined by Getis and Aldstadt
(2004), and compare the performance of the modified
spatial weight matrix and its original case through a
simulation study; and 2) compare the performance of
the original and modified (local-statistics based) spatial
weight matrix with the commonly used contiguity- based
and nearest distance-based spatial weight matrix through
an application to field data to map the distribution of
Rosa multiflora, a major non-native invasive shrub, in
the Upper Midwest states. In addition, this study will
explore the effect of incorporated spatial weight matrices

on covariate selection and interpretation through com-
parison of the derived spatial regression models and a
multiple linear regression model, a reference model that
does not incorporate a spatial weight matrix.

2 Definition of Getis-Ord G∗
i (d)

Getis and Ord (1992) and Ord and Getis (1995) intro-
duced the spatial statistics G(d), Gi(d) and G∗i (d). G(d)
is a global indicator of spatial clustering; but Gi(d) and
G∗i (d) can be used to detect local clusters. These three
statistics are defined as,

G(d) =

∑
i

∑
j wij(d)xixj∑
i

∑
j xixj

, (1)

Gi(d) =

∑
j (wij(d)xj −Wix̄(i))

s(i){[(nS
1i

)−W 2
i ]/(n− 2)}1/2

, j 6= i, and

(2)

G∗i (d) =

∑
j (wij(d)xj −W ∗i x̄)

s ∗ {[(nS∗
1i

)−W ∗2i ]/(n− 1)}1/2
, all j (3)

Where, wij(d) is a symmetric 0 or 1 spatial weight ma-
trix with 1 for all links defined as being within dis-
tance d of the ith observation; Wi =

∑
j 6=i

wij(d),W ∗i =

Wi + wii, S1i =
∑
j w

2
ij , j 6= i, andS∗1i =

∑
j w

2
ij ; x̄(i) =∑

j xj

(n−1) , and s2(i) =

∑
j x

2

j

(n−1)−(x̄(i))2, j 6= i; x̄ and s2 denote

the usual sample mean and variance, respectively.
A positive value of G∗i (d) indicates a cluster of rel-

atively high values within d of the ith observation; a
negative value of G∗i (d) indicates a cluster of relatively
low values within d of the ith observation. The difference
between Gi(d) and G∗i (d) is that the former does not
consider the contribution of the ith observation, but the
latter does.

2.1 Constructing spatial weight matrices using
Getis-Ord G∗i (d) In general, G∗i (d) values monotoni-
cally increase around the ith observation as the distance
from that observation increases up to a point, then begin
to decrease. This point is defined as the critical distance,
dc, (Getis and Aldstadt 2004), where any continuity in
spatial dependence or association over distance ends;
thus, it defines the cluster diameter (Getis and Aldstadt
2004). To compute G∗i (d), we need to define the neigh-
bors of the ith observation. Getis and Aldstadt (2004)
calculated dc based on one unit separating centers of
rook’s case neighbors – the neighbors share a common
boundary – within the distance dc. For simplicity, in this
study, we use all neighbors within dc. We also denote d1
as the distance to the first nearest neighbor. Then Getis

mailto://yuwm@hotmail.com
http://mcfns.com


Yu et al. (2017)/Math.Comput. For.Nat.-Res. Sci. Vol. 9, Issue 2, pp. 17–??/http://mcfns.com 19

Table 1: Results of simulation study, where SLM 1 uses the spatial weight matrix W∗ and SLM 2 uses the modified
spatial weight matrix W ∗ ∗.

AIC Estimated ρ Moran’s I of residuals

SLM 1 SLM 2 SLM 1 SLM 2 SLM 1 SLM 2

Random N=25

Mean 2486.6 2486.8 0.78 0.78 0.35 0.35
Max 2613.6 2613.3 0.88 0.88 0.42 0.42
Min 2404.3 2404.5 0.67 0.67 0.29 0.29
SD 56.2 56.2 0.05 0.05 0.03 0.03

2-Cluster N=25

Mean 1677.9 1663 1.17 1.13 1.09 1.14
Max 1796.1 1789.5 1.2 1.15 1.19 1.24
Min 1550.5 1533.2 1.13 1.09 1.04 1.09
SD 64.5 66.8 0.02 0.02 0.03 0.03

6-Cluster N=25

Mean 1420.2 1400.1 1.18 1.14 1.03 1.07
Max 1492.8 1481.9 1.2 1.16 1.06 1.11
Min 1318.8 1295.1 1.14 1.11 0.99 1.04
SD 47.7 49.8 0.02 0.01 0.02 0.02

and Aldstadt (2004) defined the spatial weight matrix
W ∗ as,

1. When dc = 0,

w∗
ij

= 0, for all j

2. When dc = d1,

w∗
ij

= 1, for all j, where dij = dc;

w∗
ij

= 0, otherwise;

3. When dc > d1,

lw∗
ij

=
|G∗i (dc)−G∗i (dij)|
|G∗i (dc)−G∗i (0)|

, for all j where dij ≤ dc;

w∗
ij

= 0, otherwise. (4)

Where, G∗i (dc) is the G∗i score at dc, and G∗i (0) is
the G∗i score for the ith observation only and G∗i (0) is
the base from to which other measures of G∗i (d) are
compared. According to the definition, w∗ij is 0 for all
the observations that have no spatial correlation with its
neighbors, including that dc is equal to 0 or the distance
between the ith and jth observation is greater than dc.

According to the definition of Getis-Ord Gi
∗(d), the

distance (d) identifies which observations should be in-
cluded in the calculation, and the statistic Gi

∗(d) is
implicitly related to the distance. Thus, W ∗ is implicitly
related to the distance. However, Carl and Kühn (2007)
argued that the similarity of the values of two observa-
tions is inversely related to the geographical distance
between each other. In other words, we should assign
greater weights to the observations closer to the given
observations and smaller weights to the observations that

are farther away from the given observations. There-
fore, in this study we used inverse-distance to weight the
Getis–Ord Gi

∗(d) in order to obtain a modified spatial
weight matrix W ∗∗ such that it explicitly reflects the
impact of distance and meanwhile maintains the local
adaptive nature of W ∗, thereby outperforming the other
spatial weight matrices. The modified spatial weight
matrix W ∗∗ is defined as,

1. When dc= 0,

w∗
ij

= 0, for all j

2. When dc= d1,

w∗
ij

= 1, for all j, where dij = dc;

w∗
ij

= 0, otherwise;

3. When dc >d1,

lw∗
ij

=

∣∣∣G∗i (dc)/dkc −G∗i (dij)/dkij ∣∣∣∣∣G∗i (dc)/dkc −G∗i (0)
∣∣ , for all j where :

dij ≤ dc;
w∗

ij
= 0, otherwise. (5)

Where, k is a non-negative constant. For simplicity, in
this study, k is set to one.

The Spatial Lag Model (SLM) was used in the simula-
tion study as follows:

Y = α+ ρWY + βX + ε, (6)

where Y is the response variable generated by the simula-
tion, ρ represents the dependence structure of the variable
Y , β represents the effect on the observations that are
not correlated with any of their neighbors, and W is a
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spatial weight matrix (W ∗ or W ∗∗). Just as in Getis and
Aldstadt (2004), we added a dummy variable X, which
takes on the value of one for all observations having no
dependence structure and zero otherwise, to compensate
for the zero-rows effects in W . The parameters were
estimated by using maximum-likelihood methods.

2.2 Simulation design For the simulation study, we
used the same design as Getis and Aldstadt (2004) except
that we changed the cluster radius in the 2-cluster case to
6 instead of 8 to avoid overlap of cells (Table 1). Each of
three types of 30 by 30 raster data sets was simulated for
25 times. The 25 replications with cluster patterns were
considered to be sufficient for representing a wide variety
of spatial structures (Getis and Aldstadt 2004). The
three types are a random normal representing a pattern
with no spatial autocorrelation among the values placed
in the cells, a pattern of 2 clusters of equal sizes, and
a pattern of 6 clusters indicating the spatial structure
with random combinations of multiple patches of varying
sizes. All the values put in the cells were generated
from a standard normal distribution. Figure 1 shows
one realization of the random normal pattern, 2-cluster
pattern, and 6-cluster pattern representing the potential
spatial structure of collected data such as the distribution
of invasive shrubs per se. For the data sets shown in
Figure 1, Figure 2 shows the spatial distribution of the
critical distances, which determine the size of spatial
weights. For the ith observations, the critical distance
is calculated as follows: first, for each given d, we found
the nearest neighbors of the ith observations within d;
second, we calculated the G∗i (d); last, dc is defined as
the value d such that G∗i (d) is the maximum and G∗i (d)
is monotonically increasing in the interval (0, d).

2.3 Evaluation criteria Per Getis and Aldstadt
(2004), AIC, autocorrelation coefficient ρ, and Moran’s I
of residuals were used to evaluate the model performance.
Given a set of candidate models for the data, the model
with a minimum AIC value will be chosen. AIC penal-
izes the model with more parameters since the value of
AIC increases as the number of parameters in the model
increases.

Getis and Aldstadt (2004, page 98) argued that “the
autocorrelation coefficient gives an interpretation for the
possible association between WY and Y ”. If ρ = 1, it
means that W is a good representation of the spatial
autocorrelation among data; otherwise, if ρ is close to
0, it means that W is not a good representation of the
spatial autocorrelation among data. In addition, Getis
and Aldstadt (2004) used Moran’s I to detect the spatial
autocorrelation among the residuals. The Moran’s I is

Figure 1: (a) Random data set. 900 values are generated
from the standard normal distribution and randomly
assigned to the cells of the 30 by 30 grid; (b) 2-cluster
data set. 900 values are generated from the standard
normal distribution and assigned randomly to 2 clusters:
1 of high value and 1 of low value with radius 6 and
centered at (10, 10) and (20, 20); (c) 6-cluster data
set. 900 values are generated from the standard normal
distribution and assigned randomly to 6 clusters: 3 of
high values and 3 of low values with radii 2, 4, and 6
respectively and centered at (14, 27), (27, 14), (8, 22),
(22, 8), (10, 10), (20, 20).
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Figure 2: Critical distance (dc) for the random pattern
(a), 2-cluster pattern (b), and 6-cluster pattern (c) cor-
responding to the data sets in Figure 1. Distances are
based on nearest neighbors.

defined as,

I =

N ∗
N∑
i=1

N∑
j=1

wij(ei − ē)(ej − ē)

N∑
i=1

N∑
j=1

wij ∗
N∑
i=1

(ei − ē)
(7)

where, N is the number of cells, e is the residuals vector,
and wij is a spatial weight between the ith observation
and jth observation. If W accounts for all of the spatial
variation in y, the residuals should be spatially random.
Moran’s I of the residuals was computed by using the
same W that was used in the corresponding candidate
models.
An applied example with non-native invasive

plant data
Data on non-native invasive plants in forested ecosys-

tems were collected from seven states in the Upper Mid-
west: Indiana, Illinois, Iowa, Missouri, Michigan, Wiscon-
sin, and Minnesota. Of these states, northern Minnesota,
northern Wisconsin, northern Michigan, and southern
Missouri are the most heavily forested areas (forested
lands >30%), while the middle of this region, covered
mostly by prairie prior to European-American settlement,
is currently a mosaic of agricultural lands and urban ar-
eas (forested lands ˜10%). Extensive human activities
(e.g., timber harvesting, clearing land for settlement) in
the Upper Midwest created many opportunities for the
establishment and spread of NNIPs.

During the 2005–2006 inventory years, 8, 662 U.S. De-
partment of Agriculture, Forest Service, Forest Inventory
and Analysis (FIA) phase 2 plots in the seven states were
assessed for presence or absence and cover (percentage of
total plot area) of any of the 25 non-native invasive plant
species (Fan et al. 2013). In total, 594 of 649 counties
in the Upper Midwest have FIA plots on forest land and
2, 039 (23.5) of 8, 662 FIA plots were invaded by one
or more of these invasive shrubs. Among the assessed
NNIPs, multiflora rose (Rosa multiflora Thunb., MFR
hereafter) was most prevalent and was present in 1, 320
(15.2% of all FIA plots).

Mapping the distributional pattern of MFR at
the county level

In this data set, the average number of forested FIA
plots per county is 14, but varies dramatically by county
and subsequently may affect the estimation of the abun-
dance (presence probability) of MFR. To overcome this
potential bias from the sample size, one common way is
using the nearest neighbor (moving window) method to
adjust the abundance of MFR in a county as:

Abundancei =

∑
j∈ηi

sj∑
j∈ηi

nj
(8)
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Where, sj is the number of the presence plots in the
county j, nj is the total plots in the county j, and ηi
is the set of counties that share a boundary with the
county i, including the county i. However, because this
study is not for predictive purposes, but instead for
understanding how different spatial weight matrices work
in mapping the distributional pattern of MFR, we ignore
the sample size effect. The presence probability of MFR
in a county was calculated as the ratio of the number of
presence plots to the total number of FIA plots and was
assigned a value of zero if no FIA plots were installed in
a county. An arcsine transformation was conducted on
the presence probability of MFR, and the transformed
presence probability was used as the response variable
in spatial mapping through regression models.

Based on the literature and exploratory data analyses
(Fan et al. 2013), the following covariates were selected to
model the abundance of MFR (equation (4)): percentage
of forest cover as a whole or by major forest-type group at
the county level, road (interstate and state highway) den-
sity, and latitude/longitude (using the geometric center of
each county). The forest cover type map layer was down-
loaded from the National Atlas (www.nationalatlas.gov).
Twenty-five forest cover types were obtained from the
Advanced Very High Resolution Radiometer (AVHRR)
and Landsat Thematic Mapper (TM) imagery. We
combined these forest cover types into 7 forest-type
groups: conifer, oak/pine, oak/hickory, oak/gum/cypress,
elm/ash/cottonwood, maple/beech/aspen/birch, and non-
forest. Their percentage areas (ratio of each forest cover
type to area of each county, %) and total forest percent
cover were calculated by using GIS for each Upper Mid-
west county. The road map layer was obtained from the
National Atlas (www.nationalatlas.gov) and road densi-
ties (the length of interstate and state highway per unit
area, km/km2) were calculated for all Upper Midwest
counties by using Spatial Analyst in ArcGIS. Further-
more, we defined a new variable, RDPF, as the ratio
of the road density and the county forest percentage.
We found that RDPF better describes the intensity
of human disturbances and forest fragmentation and is
more closely correlated with the abundance of invasive
shrubs than either road density or county forest percent-
age alone.

Overall, abundance of MFR changed linearly with
the covariates except for latitude. To reflect the
“mound” shaped relationship between abundance and lati-
tude/longitude, the quadratic form of latitude/longitude
was included in the process of model construction. We
used a multiple linear regression model (MLR, neglecting
spatial autocorrelation, used to compare with the SLM)
and SLM in equation (4) (SLM, the original and modi-
fied spatial weight matrix, one contiguity (queen’s rule)-
based spatial weight matrix and one k-nearest [k = 3]

distance-based spatial weight matrix incorporated to ac-
count for spatial autocorrelation) to map the change of
abundance of multiflora rose with the selected covariates.
Here, Y is the arcsine transformed abundance of MFR;
X is a set of covariates consisting of: latitude (quadratic
form), forest percentage as a whole and by forest-type
groups (conifer, oak/pine, oak/hickory, oak/gum/cypress,
elm/ash/cottonwood, maple/aspen/beech/birch), road
density, and TRPF; βis are the regression coefficients
to be estimated; ν is the independent error vector and
assumed to be normally distributed; ρ is the simultane-
ous autoregressive error coefficient; and W is the spatial
weight matrix. SLM 1 and SLM 2 used W ∗ as defined
by Getis and Aldstadt (2004) and the modified W ∗∗, re-
spectively; and SLMs 3 and 4 used the contiguity-based
spatial weight matrix and the nearest distance-based
spatial weight matrix, respectively. AIC was used to
select the best model from the candidates. Further, to
assess the goodness-of-fit of both SLMs, we reported the
Nagelkerke pseudo-R2, which is defined as:

R2 =
1− (L(Mintercept)/L(Mfull)

2/N

1− (L(Mintercept))2/N
(9)

where Mfull is the model with predictors, Mintercept

is the model without predictors, L(.) is the likelihood
of the corresponding models, and N is the number of
observations. We also evaluated the spatial patterns of
residuals by using local Moran’s I.

All statistical computation, analysis, and simulation
were conducted under the R statistical environment (R
Development Core Team 2011). The package spdep was
used to fit the SLM model and the sp and maps packages
were used to draw graphics (Bivand et al. 2008).

2.4 Results and Discussion The simulation results
showed that for all cases, the value of the autocorrelation
coefficient, ρ, is significantly different from 0 (p <0.0001)
(Table 1). In general, the range of Moran’s I is in the
interval (-1, 1). In the 2- and 6-cluster cases, however,
Moran’s I values were slightly greater than 1. This result
may have occurred because the number N in equation
(7) does not represent the actual number of cells as some
observations have no spatial autocorrelation with their
neighbors and the corresponding rows in the modified
spatial weight matrices are zero.

In the random case, the mean AIC values and the
variation of AIC were almost the same for both SLMs.
In the 2-cluster case, the mean AIC value of SLM 2 is
not significantly different from that of SLM 1. In the 6-
cluster case, the mean AIC value of LSM 2 is significantly
smaller than that of SLM 1 at 10% significance level (p
= 0.0755). However, the estimated mean values of the
autocorrelation coefficient, ρ, and the Moran’s I value of
residuals have small but significant differences for both
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Figure 3: The empirically estimated and model mapped presence probability of multiflora rose in the upper Midwest,
2005-2006. SLM models 1 and 2 use the original and modified Getis-Ord Gi* based spatial weight matrix, and models
3 and 4 use contiguity- based and nearest distance-based spatial weight matrix, respectively.

mailto://yuwm@hotmail.com
http://mcfns.com


Yu et al. (2017)/Math.Comput. For.Nat.-Res. Sci. Vol. 9, Issue 2, pp. 17–??/http://mcfns.com 24

Figure 4: Spatial clusters of residuals of the MLR and SLM models at the significant level of alpha = 0.05. SLM
model 2 and model 3 are best for they have fewest and smallest clusters.

models in both the 2- and 6-cluster cases. Thus, we
conclude that W ∗∗ performs better than W ∗ according
to the AIC rule when spatial autocorrelation occurred in
the data.

Equation (5) can be rewritten as:

w∗∗
ij

=

∣∣G∗i (dc)−G∗i (dij)× dc/dij

∣∣
|G∗i (dc)−G∗i (0)× d

c
|

(10)

In general, if dij is close to dc (i.e., dc/dij is close to 1),
then w∗∗

ij
is greater than w∗

ij
. If dij is much smaller than

dc (i.e., dc/dij is large enough), then w∗∗
ij

is smaller than
w∗

ij
. Thus, the modification of W ∗ adjusts weights by

assigning a greater weight to observations that are far
away from ith observations and assigning smaller
weights to observations close to ith observations. The
better performance of the modified spatial weight matrix
may be attributed to the fact that the original case
W ∗ over-weighted the observations that are close to ith

observations and under-weighted the observations that
are far away from ith observations (Carl and Kühn 2007).

Notice that W ∗ is a special case of W ∗∗ as k = 0, and
W ∗∗ extends W ∗ to a more general case without losing
its local adaptive property. On the other hand, though
k is set to one for simplicity, we may choose an optimal
k, which minimizes AIC, by using the trial-and-error
method with the data.

The spatial distribution of MFR at the county level
showed a strong spatial autocorrelation characterized by
several clusters centered in southern Iowa, northeastern
Illinois, and north-central Indiana (Figure 3). The SLMs,
to varying degrees, captured major clusters; the MLR
model, however, failed to distinguish these clusters (Fig-
ure 3). Among the SLMs, model 2, which was based
on the modified spatial weight matrix (W ∗∗), had the
smallest AIC and MSE and largest Nagelkerke pseudo-
R2 (Table 2). The spatial patterns of residuals showed
that SLM 2 was comparable to SLM 3 (which used the
contiguity-based spatial weight matrix), but better than
the MLR model and the original Getis-Ord G∗i (d) local
statistic and nearest-distance-based SLMs (1 and 4) in
terms of fewer and smaller clusters of residuals (Figure 4).
A closer county-by-county inspection indicated that the
abundance indicated by SLM 2 is larger in most counties
in the central and southern parts of the study region,
but smaller in the northern portion than for other SLMs.
The difference in AIC, MSE, and Nagelkerke pseudo-R2

values for the MLR model and SLMs can be attributed
to the spatial weight matrix since it is the only difference
between them. This means the spatial weight matrix
based on the modified Getis-Ord G∗i (d) performs bet-
ter than other spatial weight matrices incorporated in
mapping the regional pattern of invasive plants. Fan et
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Table 2: The results of multiple linear regression (MLR) model and four spatial lag models (SLMs) to map the
presence probability of multiflora rose in the Upper Midwest counties.

Model Variables Estimate SE p-value AIC/MSE *Adjusted R2

MLR model

Intercept -24.0244 4.5878 ¡0.0000 - /

0.2286

Latitude 1.2217 0.2182 ¡0.0000 0.0893
Latitude2 -0.0151 0.0026 ¡0.0000

Oak/Hickory -0.2527 0.1598 0.1142
Oak/Gum/Cypress -7.4027 3.3458 0.0273

Elm/Ash/Cottonwood 1.0607 0.5517 0.055
RDPF 0.5085 0.1112 ¡0.0000

SLM 1

Intercept -17.8433 4.7232 0.0002 880.93/

0.2599*

Latitude 0.9249 0.2245 ¡0.0000 0.0723
Latitude2 -0.0116 0.0027 ¡0.0000

Oak/Hickory -0.3287 0.1632 0.044
Oak/Gum/Cypress -7.4745 3.2999 0.0235

Elm/Ash/Cottonwood 1.2801 0.5918 0.0305
RDPF 0.4304 0.1164 0.0002

SLM 2

Intercept -15.6433 4.7061 0.0009 863.54/

0.2795*

Latitude 0.8163 0.2238 0.0003 0.0671
Latitude2 -0.0103 0.0026 ¡0.0000

Oak/Hickory -0.314 0.1622 0.0529
Oak/Gum/Cypress -7.1966 3.2533 0.027

Elm/Ash/Cottonwood 1.3694 0.5827 0.0188
RDPF 0.3983 0.1156 0.0006

SLM 3

Intercept -25.5854 5.9048 ¡0.0000 869.28/

0.2731*

Latitude 1.2942 0.2808 ¡0.0000 0.0685
Latitude2 -0.016 0.0033 ¡0.0000

Oak/Hickory -0.186 0.1904 0.3284
Oak/Gum/Cypress -5.4456 3.5445 0.1245

Elm/Ash/Cottonwood 0.8175 0.6213 0.1883
RDPF 0.3969 0.1204 0.001

SLM 4

Intercept -25.0887 5.0336 ¡0.0000 883.01/

0.2575*

Latitude 1.2732 0.2394 ¡0.0000 0.0793
Latitude2 -0.0158 0.0028 ¡0.0000

Oak/Hickory -0.2648 0.1697 0.1186
Oak/Gum/Cypress -6.3243 3.5397 0.074

Elm/Ash/Cottonwood 1.0099 0.5712 0.077
RDPF 0.4209 0.1151 0.0003

*Nagelkerke pseudo-R2; SLM 1 and 2 use the original and modified Getis-Ord G∗
i based spatial weight matrix,

respectively; and models 3 and 4 use a contiguity-based and nearest distance-based spatial weight matrix, respectively.
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al. (2013) mapped the abundance of invasive shrubs and
analyzed the associated factors by using the nonpara-
metric kernel smoothing and CART (classification and
regression tree), respectively. Invasive shrubs such as
MFR were predominantly distributed in the central part
of the study area with two major clusters surrounding
Chicago, Illinois and Des Moines, Iowa, similar to the
simulated 2-cluster pattern. Test statistics indicate that
SLM 2 performed well; simulated data conformed well
to actual data.

With the model per se, the estimated regression coeffi-
cient for RDPF in the SLMs were significantly smaller
than that in the MLR model, suggesting that RDPF had
less leverage in predicting the abundance of MFR after
the spatial autocorrelation was partially interpreted by
the spatial weight matrix (Table 2). There was no signif-
icant difference in the estimated RDPF among the four
SLMs although the estimated values for models 2 and
3 tended to be small compared to models 1 and 4.The
estimated regression coefficients for other covariates in
models 3 and 4 were nearly identical to those in the MLR
model. However, models 1 and 2 had significantly larger
estimated values for the intercept and smaller estimated
values for latitude (linear term) than the MLR model
and SLMs 3 and 4. Further, forest type covariates were
statistically significant in models 1 and 2 in contrast
with the marginal significance or non-significance in the
MRL model and models 3 and 4. The MLR model, as
a benchmark, did not account for spatial autocorrela-
tion, which resulted in inaccurate parameter estimation
and invasive shrub simulation because of the downward
bias in the estimation of coefficient variances (Anselin
and Bera 1998, Keitt et al. 2002, Haining 2003). The
SLMs with the contiguity-based spatial weight matrix
(model 3) and the nearest distance-based spatial weight
matrix (model 4) may somewhat improve the estimates
for certain covariates (e.g., RDPF). But the SLMs with
the local statistics-based spatial weight matrix perform
better in mapping the regional patterns of clustered MFR
data and estimating covariate effects (Table 2).

Compared to the original Getis-Ord G∗i (d)-based spa-
tial weight matrix (in SLM 1), the modified spatial weight
matrix (in SLM 2) renders a relatively large effect for
the intercept, forest types, and the quadratic term of
latitude, but a small effect for RDPF and latitude. This
result means that the modified spatial weight matrix
explained more spatial variation (clusters) related to lat-
itude and forest types than the original spatial weight
matrix as shown by the spatial pattern of residuals (Fig-
ure 4). The significant association (p < 0.0003) between
abundance of MFR and latitude (including its quadratic
form) reflected the unimodal distribution pattern in the
latitudinal direction (from south to north) with major
clusters of high presence probability centered in southern

Iowa, northern Missouri, and northern Illinois (Figure
3). The abrupt decrease of invasive shrubs at latitudes
greater than 44°N may suggest that the dispersal of
MFR, which is the most prominent of the major invasive
shrubs, is limited by the extremely low temperatures in
the northern part of the region (Doll 2006, Denight et al.
2008).

The abundance of MFR was negatively associ-
ated with the forest-type groups oak/hickory and
oak/gum/cypress, and positively related to the forest-
type group elm/ash/cottonwood in all models. This
relationship indicated that MFR were more likely to in-
vade counties with higher proportions of lowland forests
such as elm/ash/cottonwood. MFR was less abundant
in bottomland forests (e.g., oak/gum/cypress) or upland
forests (e.g., oak/hickory), a result consistent with the
traits of the major invasive shrubs (e.g., non-native bush
honeysuckles). MFR is most productive in sunny areas
with well-drained moist uplands and lowlands; it endures
shade, sun, and damp or dry conditions, but does not
grow well in standing water or in extremely dry areas
(Bowman’s Hill Wildflower Preserve 1997, Munger 2002,
Doll 2006). The appearance of these three forest-type
groups in the MLR and SLM models in predicting the
abundance of MFR most likely reflected their prominence
(e.g., oak/hickory, elm/ash/cottonwood) in the area (i.e.,
Iowa, Missouri, Illinois, and Indiana) where IPs were
widely distributed (Moser et al. 2016).

In this study area, most of the forests are located in
the northern part of Minnesota, Wisconsin, and Michi-
gan and in southern Missouri; the central part of the
study region is less forested. Human disturbances and
urban development result in decreased forest cover ac-
companied by increased road density. Road development
usually leads to increased forest fragmentation and in-
creased habitat for IPs. By altering overall landscape
structure and increasing the ratio of forest edge to to-
tal forest area, roads open up a higher proportion of
forest area to invasion by non-native plants (Saunders
et al. 2002, Mortensen et al. 2009). As road density
increases, a higher proportion of the landscape becomes
roadside habitat, which tends to be highly invaded by IPs
(Gelbard and Belnap 2003). Watkins et al. (2003) doc-
umented that prevalence of IPs is negatively associated
with the distance to road. Von der Lippe and Kowarik
(2007) found that long-distance dispersal of seeds of IPs
by vehicles is a routine rather than an occasional mecha-
nism, and dispersal of plants by vehicles will accelerate
plant invasions. Moser et al. (2008) found that the pres-
ence of MFR is significantly and negatively related with
distance to road at the plot level. Compared to highway
density and county forest percentage, which measure
human disturbances from different perspectives, RDPF
provides a synthetic measure of the intensity of human
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disturbances. The significant (p < 0.001), positive as-
sociation between the abundance of MFR and RDPF
confirms human disturbance as one of the major driving
factors for its invasion and spread in the Upper Midwest.
Greater human presence reduces native forest ecosystem
defenses, by upsetting ecological stability via disturbance
and increasing the opportunity for niche capture by inva-
sive plants, and often increases propagule pressure, both
passively and actively, thus further increasing abundance
of the invaders (Macdonald 1994, Pimentel et al. 2005,
Richardson and Pysek 2006).

3 Conclusions

In this study, we compared the performance of two
spatial weight matrices, W ∗ and W ∗∗, based on the
local spatial statistics Getis-Ord G∗i . We found that
with strong spatial autocorrelation of invasive plants
such as multiflora rose W ∗∗ performs better than W ∗

and the contiguity- and nearest distance-based spatial
weight matrix. The spatial weight matrix W ∗ is a special
case of the spatial weight matrix W ∗∗. The modified
spatial weight matrix W ∗∗ extends the spatial weight
matrix W ∗ to a more general case without losing its
local adaptive property. The SLM with a spatial weight
matrix based on local spatial statistics such as Getis-
Ord G∗i provides a promising approach to map regional
patterns of sophisticated ecological phenomena such as
the invasion and spread of invasive plants. Compared to
spatial weight matrices defined through global statistics
such as geostatistical or inverse-distance models, the local
statistics-based spatial weight matrix demonstrates its
strength and efficacy in explaining the spatial variation
of the data, particularly when the distribution of invasive
plants is controlled by a number of multi-scale processes
and takes a spatial pattern of multiple clusters of various
sizes.

Our results also indicated that spatial weight matrices
might affect the choice of the factors used to explain
the abundance of invasive plants. In addition to spatial
autocorrelation, which was explained by spatial weight
matrices, the variation in abundance of invasive plants
such as multiflora rose in the Upper Midwest counties
was attributable to human disturbances (RDPF), a geo-
graphic factor (latitude), and forest conditions. But the
significance of these factors in the model may change
with the choice of spatial weight matrices. In this study,
with the original and modified spatial weight matrix
based on the local spatial statistics Getis-Ord G∗i , county-
level proportions of oak/hickory, oak/gum/cypress, and
elm/ash/cottonwood forest-type groups became signif-
icant at the significance level of α = 0.05 compared
to the marginal significance or non-significance with the
MLR model and the SLMs with contiguity- and distance-

based spatial weight matrix. The distribution of multi-
flora rose was primarily related to latitude and human
disturbance, but forest types were also related to the
observed clustering patterns. The SLM with the modi-
fied spatial weight matrix performs better in explaining
the spatial patterns of multiflora rose and detecting sec-
ondary covariate effects than the MLR model and the
SLMs with spatial weight matrices based on the original
Getis-Ord G∗i contiguity, or distance.
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