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A SIMPLE AND EFFECTIVE

FOREST STAND MORTALITY MODEL
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Abstract. A whole-stand survival model is presented, that is parsimonious and well-behaved when
extrapolated, making it particularly useful in data-poor situations. It is argued, on biological and system-
theoretical grounds, that a suitable differential equation for the mortality rate should contain number
of trees and top height on the right-hand side, avoiding age, mean diameter, or basal area. Following
Eichhorn’s hypothesis, site quality can be neglected by modelling rates relative to height growth. The
proposed model is dN/dH = −aN bHc , where N is number of trees per unit area, H is top height, and a,
b and c are parameters to be estimated. The equation can be integrated to predict mortality between any
two points in time. Satisfactory performance is demonstrated with a white spruce data set from British
Columbia. It is shown that the model generalizes concepts of relative spacing, and mortality models for
radiata pine and Douglas-fir used by Beekhuis in New Zealand in the 1960’s. Asymptotic behaviour is
related to the 3/2, Reineke, and relative spacing self-thinning laws. Limitations of the self-thinning theories
and relationships among their various forms are discussed.
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1 Introduction

The prediction of tree mortality (or more optimisti-
cally, survival) is widely recognized as difficult, due to
its high variability (e.g., Vanclay 1994). The problem is
exacerbated when the available data is limited, and/or
does not cover a wide enough range of growing condi-
tions. In that situation, it would be desirable to use a
model with few parameters, and that behaves reasonably
when extrapolated.

I propose such a robust, whole-stand level model for
even-aged stands. As usual, catastrophic mortality is ex-
cluded, modelling only regular, density-dependent mor-
tality (Vanclay 1994). The model has been used as a
component in a new stand growth model for natural and
planted white spruce in the SBS biogeoclimatic zone of
British Columbia; the spruce data is used to illustrate
its performance (Figure 1).

The following section presents the reasoning behind
the new model, and shows the results of fitting the
spruce data. Historically, the model derives from one
of Beekhuis (1966), and the connection with it and with
concepts of relative spacing are presented next. Finally,
relationships to self-thinning theories are discussed.

2 Model

2.1 Rate equations. The mortality rate, for a given
site quality q, can be predicted by some function of the
current values of stand variables such as density, age,
top height, basal area, mean dbh, volume per hectare,
etc.:

dN

dt
= −fq(N, A, H, B, D, V, . . .) . (1)

Equivalently, models are sometimes expressed in
terms of the relative mortality rate (−dN/dt)/N =
−d lnN/dt. Variables such as D and V may enter as
part of density indices based on self-thinning laws.

2.2 Stem diameter. Tree diameter, basal area, or
volume, reflect the amount of xylem accumulated on the
stems. Especially in relatively undisturbed stands, these
can be good predictors of future development because
they tend to summarize past growth conditions. Biolog-
ically, however, a causal connection between the mostly
dead xylem and stand development is difficult to justify,
and the correlations can be expected to weaken or break
down when stand density is manipulated. I suggest that
these variables should be avoided on the right-hand sides
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Figure 1: British Columbia white spruce stand density data. Re-measurements in each permanent sample plot are
joined by lines. A scaling of breast-height age according to site quality makes the trends comparable across sites.
All measurements older than 25 years are in natural stands; except for one high-density plot, all the stands younger
than 25 years are planted.

of growth models for managed stands. One is left with

dN

dt
= −fq(N, A, H) . (2)

These models are common. Zhao et al. (2007) re-
viewed 27 models that are all of the form

dN

dt
= −Naf(A, q) , (3)

where a is a parameter, and f are various functions of
age and site index. Conceptually, it may be useful to
distinguish between age, as in A = 33 years-old, and
time, as in t = 2008. It is convenient, however, to sub-
stitute dN/dt = dN/dA, using the fact that dA/dt = 1,
i.e., age increases over time at a rate of one year per
year. Equation (3) can then be easily integrated as a
separable differential equation by writing

N−a dN = −f(A, q) dA ,

and integrating on both sides. As a simple example, the
model of Clutter and Jones (1980),

dN

dA
= −aN bAc (4)

gives
N1−b

1 − b
+ a

A1+c

1 + c
= constant . (5)

The stand density at any age can then be predicted given
the density at any other age from

N2 = [N1−b
1 − a

1 − b

1 + c
(A1+c

2 − A1+c
1 )]1/(1−b) ,

provided that there are no management or serious nat-
ural disturbances between A1 and A2.

2.3 Age or height? Typically, when a forester looks
for explanatory variables, the first one that comes to
mind is age. But perhaps he/she is actually thinking of
size. For a given site, age and height are closely related,
and in practice it may not make much difference which
one is used. Physiologically, it can be argued that size
would dominate over any ageing effects, especially in
trees, where meristems are constantly renewed. It will Erratum:

7/14/09be more convenient here to use top height instead of age,
so that (2) reduces to

dN

dt
= −fq(N, H) .

It is also convenient to divide by the height growth
equation dH/dt = hq(H), to obtain a relationship be-
tween N and H :

dN

dH
= −fq(N, H)/hq(H) ≡ −gq(N, H) . (6)
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2.4 Eichhorn’s hypothesis. Eichhorn (1904) found
that graphing yield table predictions over height instead
of age produced similar curves for all site qualities. Al-
though not universally accurate, in many instances this
so-called Eichhorn’s law is a good approximation (Ass-
mann 1970). As a slight extension, the assumption
that rates of growth and mortality relative to top height
growth are independent of site quality has been success-
fully used to simplify the development of growth models
(e.g., Beekhuis 1966, Mitchell and Cameron 1985). This
hypothesis implies that (6) is approximately indepen-
dent of site quality:

dN

dH
= −g(N, H) . (7)

A model of this form was used by Evert (1981).
As an example, Figure 2 shows mortality predictions

of Zhao et al. (2007) for loblolly pine with several ini-
tial densities and site qualities. Using their site index
equation, the same predictions are plotted over domi-
nant height in Figure 3. It seems clear that in this case
a model like (7) would be satisfactory.

2.5 The model. In view of our objective of estimat-
ing mortality with limited data, we want a parsimonious
and well-behaved function g for (7). The chosen model
is

dN

dH
= −aN bHc , (8)

where a, b and c are parameters to be estimated. Inte-
grating gives (cf. equation (5))

N1−b

1 − b
+ a

H1+c

1 + c
= constant .

The right-hand side of (8) could be justified as a first-
order Taylor expansion of log g in terms of logN and
log H , logarithms being used because the original vari-
ables are strictly positive. It is analogous to (4), the
model of Clutter and Jones (1980), but with H in place
of A, making more plausible the independence of site
quality.

An alternative formulation and parametrization using
average spacing instead of N may be preferable (Section
3):

Sα − (βH)γ = constant . (9)

Here S = 100/
√

N is the average square spacing (in
meters if N is number per hectare).

The model limiting behavior is shown below to be
compatible with generally accepted theories of self-
thinning. The three free parameters provide ample flexi-
bility in describing observed trends, but the ratio of γ/α
could also be fixed at reasonable values when dealing
with sparse data.

2.6 Application to white spruce. Model (8)–(9)
was applied to the data of Figure 1. The parameters
were estimated by nonlinear least-squares for the loga-
rithm of N (or of S) predicted over pairs of successive
observations. The regression was Erratum:

7/14/09

ln S2 = ln[Sα
1 − (βH1)γ + (βH2)γ ]/α , (10)

where (H1, S1) and (H2, S2) are consecutive data points.
It was felt that the nature of the data did not justify pro-
cedures based on more elaborate stochastic modelling.

The estimated parameter values were α = 3.979, β =
0.07213, γ = 6.009. Projections of log N and S are
shown in Figures 4 and 5, respectively. The assumption
of asymptotic relative spacing (Section 3) resulted in a
significantly worse fit, with α = γ = 4.571, β = 0.1004.

3 Beekhuis and relative spacing

Beekhuis (1966) developed a graphical mortality
model for radiata pine plantations in New Zealand that
is related to the one in Section 2.5. It was based on rela-
tive spacing, the ratio of average spacing to stand height.
Relative spacing is sometimes used to specify thinning
prescriptions, and is also known as the Hart-Becking or
Wilson index (Vanclay 1994, Wilson 1951).

Beekhuis’ model is reproduced in Figure 6. He used
triangular average spacing, which is 1.074 times the av-
erage square spacing. The graph was constructed assum-
ing no mortality until the (triangular) relative spacing
reaches 30%, and the existence of an asymptotic relative
spacing of 11%. In between, the spacing–height curve is
an arc of ellipse (Garćıa 1981). The graph also shows
a thinning regime maintaining a relative spacing above
16%. The same technique, with different threshold and
limiting relative spacings, was later used in other models
for radiata pine and Douglas-fir.

The exact model was rather cumbersome for com-
puter implementation, and a close approximation was
adopted. Noticing that the slope of the S–H curves de-
pends only on the relative spacing R = S/H , increasing
from 0 to β as R decreases to the limiting relative spac-
ing β, an approximation of the form

dS

dH
= R(β/R)α

was found suitable. Integrating,

Sα − Sα
0 = (βH)α − (βH0)α

(Garćıa 1981). With α = 5.5 and β = 0.11 (S be-
ing triangular spacing), the approximation differs from
Beekhuis’ curves by less than 3%. This is a special case
of (9), with γ = α.

A constant limiting value for relative spacing implies
that all trajectories tend asymptotically to a straight line
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Figure 2: Survival projections for loblolly pine plantations in the Piedmont/Upper Coastal Plain, site indices 60,
70, and 80 (Zhao et al. 2007).
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Figure 3: The projections from Figure 2, graphed over dominant height.
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Figure 4: Stand density projections for white spruce from model (8)–(10). Logarithmic N -scale.
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Figure 5: Average spacing projections for white spruce from model (8)–(10). Dashes: limiting self-thinning curve.
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Figure 6: Mortality model from Beekhuis (1966). The triangular average spacing axis is reversed to represent
increasing stand density. Predominant mean height is the average of the 40 tallest trees per acre.
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through the origin in the S–H plane (Figure 6), rather
than to a more general curve as in Figure 5. Unpub-
lished work on radiata pine had suggested that the line
through the origin did not always look reasonable, and
this also seems to be the case with the spruce data (Sec-
tion 2.6). The added flexibility of a different γ seems
useful, although further research on this topic might be
interesting.

4 Self-thinning limits

As mentioned before, our model implies that the S
over H trajectories ultimately approach a limiting curve,
which is S = (βH)γ/α. Or, taking logarithms and sub-
stituting N ,

log N + 2
γ

α
logH = constant . (11)

This, or more specifically the limiting relative spacing
case with γ/α = 1, is an example of self-thinning law
(Figure 7). The other two self-thinning laws commonly
encountered in the literature are Reineke’s,

logN + 1.6 logD = constant , (12)

and the 3/2 law

log w +
3
2

logN = constant , (13)

where D is the quadratic mean dbh, and w is mean tree
biomass or mean stem volume (e.g., Vanclay 1994).

Although perhaps such “laws” should not be taken
too seriously, at least a model that complies with one
of them can be trusted to behave reasonably when ex-
trapolated. In view of the widespread interest on these
topics, however, some additional observations might be
relevant.

First, note that the self-thinning line is only an asymp-
totic relationship, and does not determine mortality
rates over much of the range of interest. In addition,
Weller (1987) points out that the distortion caused by
the logarithmic transformations, together with the fact
that by using an average for diameter or volume the vari-
able N is implicated in both of the graph axes, result in
an apparent relationship that is visually stronger than it
would otherwise be. To some extent, this idea that self-
thinning laws may be partly an optical illusion seems to
be supported by a comparison of Figures 1, 4 and 7.

Assuming w approximately proportional to D2H , (13)
can be expressed in terms of the same variables as (11)
and (12):

2 log D + logH +
3
2

logN = constant . (14)

An undisturbed forest stand follows some trajectory de-
scribing a spatial curve in the three-dimensional space

logD – log H – logN . The self-thinning lines can then
be seen as asymptotes for projections of this trajectory
on various planes. They can be good approximations for
sets of unmanaged stands that do not differ too much in
their initial densities, as in the natural stands that have
been the subject of most self-thinning research. How-
ever, if the stand trajectories are separated due to dif-
ferent initial densities or thinning treatments, the most
that can be expected is a limiting plane in the three-
dimensional space (Bi 2001, Garćıa 1993). Projections
may still follow (11)–(14), but in general the constant
on the right-hand side will vary across stands. Analysis
of data from radiata pine plantations (unpublished) has
shown reasonable agreement with the limiting slopes of
the Reineke and 3/2 laws, but with levels that depend on
initial conditions and treatments. Only projections par-
allel to the self-thinning plane would produce a unique
right-hand side; establishing if (11) is close to one of
these would require further research.

Regardless of if the levels vary or not among stands,
the slopes of the various self-thinning laws are not nec-
essarily compatible (Garćıa 1993, Vanclay 1994). Elim-
inating D between (12) and (14) gives

log N + 4 logH = constant .

This coincides with (11) if γ/α = 2, compared to the
γ/α = 1 of the limiting relative spacing hypothesis. The
estimated γ/α = 1.510 from the spruce model can be
accommodated by small changes in the nominal coeffi-
cients of (12) and (13), and/or in the exponents of the
approximation w ∝ D2H .

5 Conclusions

Limited or poor-quality data requires simple mod-
els with guaranteed “logical” behavior. I suggest that
dbh, basal area and age should be avoided as explana-
tory variables in growth models. Changes relative to
height growth are often approximately independent of
site quality (Beekhuis 1966, Eichhorn 1904). The mor-
tality model of Section 2.5 followed from these principles.
The model generalizes and adds flexibility to models
used by Beekhuis (1966) and others. Extrapolation pro-
duces expected self-thinning patterns. Future research
might suggest appropriate γ/α ratios for use when the
available data is particularly poor.
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Figure 7: Self-thinning limiting line for the spruce model. Logarithmic axes.
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