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Abstract. Both mathematical and heuristic methods have advanced rapidly in spatial forest planning
over the past 20 years. The review presented here is broader in both scope and depth (more analysis within
spatial forest planning models). We conduct here a world-wide literature review and extensive analysis of
the status and trends over the past two decades in spatial forest planning. In our investigation, we hope to
understand the roles of objective and constraint functions in spatial forest planning. The literature review
results suggest that methods used in forest planning have shifted somewhat from exact analytical solution
techniques to heuristic techniques. In an effort to incorporate complex relationship into forest plans, other
solution methods have also been evaluated for adoption in the planning process. Besides the economic and
commodity production objectives, there is a noticeable increase in the proportion of ecological and social
concerns in objective functions. In Europe, multi-parameter objective functions now seem to be in vogue,
containing little or no constraints. In the U.S., single-parameter objective functions are still common,
with multiple concerns recognized as constraints. In addition to the economic and commodity production
constraints, adjacency and green-up relationships have recently been considered as important constraints
in many areas of the world. Vector data are found to be more popular than raster data in the forest
planning process, particularly in real-life applications of methods. In theoretical applications of methods,
both vector and raster data are commonly used. Limitations in mixed integer programming, heuristic
parameter selection processes, modification and enhancements to heuristics, and measurements of heuristic
solution quality are some of the gaps we have identified.

Keywords: Spatial forest planning, Mathematical programming, Heuristics, Modeling techniques,
GIS

1 Introduction

Although theoretically spatial order has always been
a factor in the development of strategic and tactical
forest plans, physically, incorporating spatial concerns
into forest planning methods has advanced rapidly only
over the past 20 years. This advance is coincident with
the advances made in computer hardware and software
technology, and satellite technology and geographic in-
formation systems (GIS), as well as changes in human
values associated with forest conditions. Interestingly,
while changes in forest structure occur globally, most of
the concern related to the timing and juxtaposition of
management activities is in developed countries. For-
est regulations and voluntary efforts of managing forests
for sustainability in these countries are the main areas
of spatial forest planning concerns [29]. In addition, as
many wildlife-habitat relationships continue to be bet-
ter understood or advanced, the evaluation of these and

other concerns has prompted advances in spatial forest
planning concepts as well.

Certain laws and directives guide the use of spatial
forest planning methods, and thus the need to adhere to
regulations, to comply with the guidelines of voluntary
certification programs, and to operate within published
forest plans [29]. U.S. National Forests, for example,
are regulated by the National Forest Management Act
(United States Congress 1976), which provides guidance
regarding the appropriate size of harvest units. In sim-
ply perusing the published forest plans, one can find in-
formation on the maximum sizes of clearcuts, the disper-
sion of the openings created, and guidance for the man-
agement of habitat patches on various national forest
lands. Some U.S. states also have passed laws that limit
the size of clearcutting activities on privately-owned land
[29, 44]. Canadian provinces may also have regulations
relating to the size, shape, and pattern of areas to be
clearcut, as may other governments, such as Sweden,
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the United Kingdom, and Australia [44]. Further, vol-
untary certification programs and habitat conservation
plans may contain inferences to compliance issues, such
harvest planning strategies that contain goals related to
the spatial management of forest land [29]. These laws
and directives typically stem from the desire to alleviate
the effects of forest management on forest fragmenta-
tion and other ecological processes, the creation of frost
pockets that hinder reforestation, and public pressure
related to aesthetic quality [44].

Over the last two decades, a number of researchers
and practitioners have performed and reported reviews
related to forest planning. For example, Church et al.
(1998) describe how forest management issues are closely
related to other similar issues in the location sciences.
In addition, the quantitative basis for measuring spatial
structure as a prerequisite to implementing forest land-
scape management has previously been characterized,
and ecological goals assessed at the landscape level, es-
pecially those objectives concerning the negative effects
of habitat fragmentation, have been discussed [11, 136].
Nowadays, in some areas of the world, forest landscape
management uses an ecosystem-based approach, which
requires different management paradigms, modeling ap-
proaches, and software engineering techniques. As a re-
sult, Baskent et al. (2000) discuss recently introduced
planning methods one might use to design an ecosystem-
based forest management plan. Although we recognize
that others have also suggested that spatial forest plan-
ning is a trend in natural resources management. One
review discussed the necessary factors that have led to
its adoption and also describes why the planning process
may be avoided [29].

A number of types of forest management problems
related to the location sciences have been classified to
emphasize the locational issues in forest management
[58]. As early as 1990, researchers introduced the idea
of heuristic simulation, and provided a brief review of
its capabilities for accommodating spatial forest plans
[71]. Besides North America and Europe, some develop-
ing countries also have accumulated significant research
on spatial forest planning; for instance, Epstein et al.
[72] provide a review on the application of operations
research systems in Chilean forest industries. Besides
the conventional single-objective plans, a review of mul-
tiple criteria decision support in forest management il-
lustrates how these methods could be beneficial for one
or more types of spatial forest planning problems [127].
Martell et al. (1998) review methods for strategic forest
management, short-term forest planning, forest opera-
tions, and forest fire management, and discuss the op-
portunities and challenges for operational researchers.
Nurullah et al. (2000) review the need for spatial strat-
ification as a method to organize the geographical in-

formation. Murray (1999) reviews some specific con-
straint functions also have been reviewed, such as the
unit and area restriction models, two basic kinds of ad-
jacency constraints in harvest scheduling. One of the
most common spatial constraints in forest planning is
related to the adjacency and green-up of clearcut har-
vests, an area of research that has stimulated researchers
and practitioners to find more efficient solution processes
for spatial forest planning problems. As early as 1990,
reviews concerning the analysis of adjacency constraints
have been presented [217, 242]. Due to the combina-
torial complexity of spatial forest planning problems,
forest planning problems have become much more dif-
ficult to solve. Reviews of combinatorial problems in-
duced by spatial forest harvest planning were presented
by Weintraub et al. (2000a) and Weintraub and Murray
(2006). Weintraub (2007) further reviews some tradi-
tional mathematic programming techniques, such as the
use of integer programming for spatial forest planning.

A comprehensive review of mathematical forest plan-
ning in North American literature was presented by Bet-
tinger and Chung (2004), providing forest managers and
researchers who are involved in forest planning tasks
with a good grasp of the trends in forest planning tech-
niques associated with the change in the forest man-
agement planning environment. In contrast, the review
presented here is broader in both scope (world-wide)
and depth (more analysis within spatial forest planning
models). Previous reviews have discussed the concep-
tual frameworks of spatial forest planning, and included
a discussion of the spatial configuration related to the
forest patches. In addition, various management ap-
proaches that could be used to conceptualize spatial for-
est planning problems were posed, along with a discus-
sion of challenges related to spatial forest planning [14].
Compared to this, our forthcoming review considers a
more extensive analysis of the status and trends over the
past two decades. In our investigation, we hope to un-
derstand the roles of objective and constraint functions
in spatial forest planning. The configuration of the ob-
jective function, for example, may provide information
regarding shifts in what researchers and land managers
want their spatial forest plans to accomplish. Constraint
functions may also illustrate that more restrictions are
being placed on forest plans, or that a different set of re-
strictions now applies, as opposed to twenty years ago.
Thus, our objective is to expend a greater effort un-
derstanding the current status, trends, and gaps in the
spatial forest planning literature.

2 Methods

We conducted an extensive literature review of peer-
reviewed spatial forest planning research based on a full
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search of twenty-three international journals and a lim-
ited examination of 19 other journals whenever there
was an indication, through the review, that relevant spa-
tial forest planning literature might be located there.
This review is mainly concerned with the use of tech-
niques for problem-solving, and not necessarily about
how problems are structured or about how models are
built. These latter two concerns are more difficult to
understand given the various manners in which research
results are presented. Therefore, we developed a classi-
fication process and used it to categorize the papers in
various ways, including (a) the methods used to accom-
modate the planning model, (b) the types of objectives
and constraints that were recognized, and (c) the size of
problems that were being addressed. The full classifica-
tion that we used can be found in Tables 1 through 3.
We examined papers published from January 1989 and
through December 2007.

Because of the complexity of natural resource manage-
ment problems today, and given our previous knowledge
of the literature, we expected that much of the litera-
ture reported the development, testing, and analysis of
new techniques for accommodating spatial forest plan-
ning issues. The two basic groups of techniques involve
heuristic methods and traditional mathematical pro-
gramming methods. In our assessment, mathematical
programming methods were sub-divided (Table 1) into
exact techniques (linear programming, goal program-
ming, integer programming, mixed integer programming
(MIP), and non-linear programming) and other tech-
niques (dynamic programming, simulation, and others).
We consider exact techniques as those that are gener-
ally deemed to guarantee the location of an optimal so-
lution to a planning problem. Heuristics and other tech-
niques generally cannot provide this guarantee. Heuris-
tic techniques were subdivided into seven commonly
used methods (genetic algorithms (GA), Monte Carlo in-
teger programming (MCIP), simulated annealing (SA),
tabu search (TS), threshold accepting (TA), the rain-
drop method, and other heuristic methods).

The type of forest planning methods applied to spatial
planning problems is of interest from a number of per-
spectives: (a) some methods are more well-understood
by practitioners than others, (b) some methods have
been demonstrated over time to be robust or simply ad-
equate, and (c) some methods are better for addressing
certain problems than others, from both computational
speed and computational complexity perspectives. We
know that some research papers describe the use of up
to eight planning techniques [24], while most describe
only one or two. In these cases, a number of planning
techniques may have been recorded as being used, all
arising from a single paper. In cases where two or more
techniques are present in a research paper, this usually

Table 1: Categories for forest-level planning techniques
described in peer-reviewed articles.

Major categories Sub categories

Heuristics

Genetic algorithms
Monte Carlo integer programming
Stimulated annealing
Tabu search
Threshold accepting
Raindrop
Other heuristics

Exact techniques

Goal programming
Integer programming
Linear programming
Mixed integer programming
Non-linear programming

Other techniques

Dynamic programming
Qualitative analysis
Simulation
Others

suggests that a validation or comparison of techniques
is performed. Further, in some instances a single tech-
nique (e.g., tabu search) may have been examined using
several different formulations or modifications [201]. In
cases such as these, the number of times a technique
is noted as being used is limited to one instance. In
other words, various modifications to techniques are not
recorded beyond the fact that the type of technique is
used.

Deciphering the formulation of planning problems is
relatively straightforward in most research papers, but
this is not universally the case. While a formal descrip-
tion of a planning problem may seem requisite, a number
of papers have been published where it is difficult to as-
certain the objective or constraints under analysis. We
began our assessment of the literature with a prelimi-
nary categorization of the elements within the objective
and constraints. The categories evolved as our assess-
ment grew, however. Table 2 represents the major cate-
gories and sub-categories of objective functions that we
determined. As we suggested, we began with a smaller
set, and found that it needed expansion as the litera-
ture search proceeded, since some objectives were not as-
sumed a priori. For example, economic and commodity
production objectives are the most obvious forest plan-
ning objectives. In addition, we assumed wildlife habi-
tat objectives would be found in the literature. How-
ever, during our search, we located research that used
measures commonly considered as constraints (e.g., ad-
jacency) in the objective function of planning problems.

With each forest and landowner comes a different set
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Table 2: Objective functions categories for forest-level
planning peer-reviewed articles.

Major categories Sub categories
Maximize net present value

Economic and Maximize revenue
commodity production Minimize discounted costs

Wood flow

Wildlife habitat
Maximize acres in habitat
Maximize species

Forest structure
Biodiversity
Recreation

Other objectives

Fire
Entomology
Adjacency
Landscape metrics
Minimize shape index
or clustering
Minimize site disturbance
Regeneration area
Water yield

Table 3: Constraint categories for forest-level planning
peer-reviewed articles.

Major categories Sub categories
Net present value

Economic and Revenue
commodity production Budget

Wood flow

Aquatics
Stream sediment
Stream temperature
Water yield

Forest structure
or inventory
Adjacency
Road-related
Wildlife
Minimum or maxaximum
harvest age

Other constraints

Fire
Entomology
Biodiversity
Carbon
Optimal bucking
Processing capacity or
materials

of objectives and constraints. The ideal situation of each
landowner behaving rationally with economic or eco-
logical objectives and institutional constraints on bud-
gets and timing considerations does not necessarily hold.
As a result, a wide variety of constraints were antici-
pated in the assessment of the literature. For example,
we planned to locate economic and commodity produc-
tion constraints as well as those related to habitat, ad-
jacency, and forest structure (e.g. ending inventory).
Some forest-level constraints were unexpected (entomol-
ogy, carbon) and were represented by few papers; there-
fore the “other” category contains several diverse natural
resource planning constraints. In a number of cases the
constraints used in various research papers were embed-
ded informally as thoughts within the text, and therefore
required a careful reading of the methodology of each
paper.

Over a period of six months, the main 23 journals we
targeted were systematically reviewed by first viewing
the titles of manuscripts to determine whether further
analysis was necessary. The reference work within the
literature we located led to other sources of research out-
side of our initial area of search. We also consulted the
vitae of numerous scientists working in this field, if those
vitae were available over the Internet. When we felt we
had exhausted our search, we began to synthesize the
contributions made thus far in spatial forest planning.

3 Results

Developing a comprehensive review of spatial forest
planning literature is somewhat difficult given all of
the potential venues in which peer-reviewed literature
might be located. Some journals provide efficient access
through the Internet, while others do not. In addition,
our organization (University of Georgia) does not nec-
essarily provide researchers direct, no-cost access to ev-
ery journal. Undeterred, 245 papers were located that
report results or discussion on spatial forest planning
activities. We found over half of the papers on spa-
tial forest plannings in either Forest Science (27.1%),
the Canadian Journal of Forest Research (16.5%), For-
est Ecology and Management (7.6%), or the European
Journal of Operational Research (5.1%). These results
were not unexpected since spatial forest planning ap-
proaches represent advances or new developments in op-
erations research methods applied to natural resource
management. These advances are better suited to jour-
nals that accommodate theoretical research, rather than
journals that accommodate applied research transfer to
forest managers. A number of other journals contained
several papers on spatial forest planning, including Silva
Fennica, Scandinavian Journal of Forest Research, The
Forestry Chronicle, and Ecological Modelling. These
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findings were expected, since these journals have forestry
or natural resource management as their main emphasis.
A few other journals that do not have forestry or natural
resource management as their main emphasis contained
as many papers as these, however, including Operations
Research, Journal of Environmental Management, and
Annals of Operations Research. Some papers were lo-
cated through limited searches in journals such as Tree
Physiology, Water Resources Bulletin, Location Science,
Nonlinear Analysis, and Discrete Applied Mathematics.
The difficulty for researchers and managers new to the
field is that at least 42 journals serve as sources for spa-
tial forest planning literature. As a result, the ability
to locate pertinent research may require a considerable
commitment of time.

The number of peer-reviewed forest planning papers
increased at a rate of about 1.5 papers per year dur-
ing the 1990s (see Figure 1). The largest number of
papers appearing in our literature review occurred in
2000. The rate of publication of papers has declined
slightly since 2000. With the exception of a few odd
years (e.g., in 2004, only 5 papers were located in the
journals.), the rate of publication seems to be between
10 and 15 papers per year. While implementation of
these techniques into real-world planning effects remains
a challenge, we may be seeing the end of the exploratory
phase of spatial forest planning. A number of the early
papers on this subject described new methods for incor-
porating spatial concerns in a forest plan or described
new problem-solving methods for spatial forest planning
problems. Advances in these areas may continue, how-
ever many further example applications may not be seen
as novel. In essence, we may be transitioning into a
phase of competitive testing and analysis, which may re-
quire an expanded effort of a research team to produce
a peer-reviewed manuscript.

3.1 Solution Techniques for Spatial Forest Plan-
ning Problems The results from our survey show that
during the 1990s, exact methods were mainly used for
problem solving or validation purposes (Figure 2). How-
ever, since about 2000, heuristics have become just as
frequently used. Although linear programming and its
derivatives are still illustrated in recently published pa-
pers, they are generally used to generate the exact or
the “relaxed” solutions to a problem in order to validate
heuristic methods (and other methods as well), or are
limited to solving various small-size problems. Simula-
tion methods are used consistently in research papers
throughout this time span, however to a much lesser
extent than heuristics. The results also show that dy-
namic programming has shown value as a forest-level
planning technique, rather than simply as a stand-level
optimization technique. It is important to realize that
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Figure 1: Number of publications in the spatial forest
planning literature, by year.

dynamic programming produces optimal solution to in-
dividual subproblem in some specific paper [107], and its
combination with other approaches to get a non-exact
solution to the master problem in the same paper.

It is well known that one of the disadvantages of
heuristic methods is that one cannot prove the solution
located is the best solution to the problem, whereas ex-
act methods provide a guarantee of optimality. However,
as problem sizes increase, it may be impossible to solve
large problems using tractable analytical methods [150].
In addition to the common exact and heuristic methods,
researchers have continuously attempted to solve spa-
tial forest planning problems with new methods. Each
year several of these new methods appear in journals.
However, in some cases these new techniques cannot
be applied to the wider range of forest planning prob-
lems without encountering some computational issues
(e.g., [20]). For example, an optimized method based on
cellular automata has been applied to solve spatial for-
est planning problem [93]; fuzzy multicriteria approval
method which is based on approval voting has been used
in forestry decision support [122], and ant colony opti-
mization has been adopted for the risk management of
wind damage in forest planning [247].

Researchers initially considered exact techniques (ta-
ble 4) as the most appropriate way to solve spatial for-
est planning problems. Goal programming (8 papers),
integer programming (14 papers), mixed integer pro-
gramming (29 papers), linear programming (64 papers)
and non-linear programming (6 papers) have been used
to solve economic and commodity production objective
function problems, yet the problem size is usually limited
to less than about 1,000 management units. Large and
more complicated problems may require use of heuristics
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Figure 2: Type of mathematical programming technique in the spatial forest planning literature, by year.

such as GA (15 papers), MCIP (17 papers), SA (33 pa-
pers), TS (25 papers), TA (4 papers), and the raindrop
method 32].

MCIP is one of the earliest heuristic methods used
in forest planning and it helped illustrate the impor-
tance of heuristic methods to the forest managers by
allowing the solution of spatial forest planning problems
that could not be solved using traditional exact meth-
ods. Some advantages of MCIP are that it is computa-
tionally fast, conceptually simple, and easy to program
and modify [174]. Thus, it is not uncommon to find
that about 70% of forest planning problems used the
MCIP method on real (not theoretical) data. Within
forest planning, it has been applied to problems related
to economic [8] and commodity production problems [61,
117, 200], and those involving adjacency constraints [67,
139, 175], wildlife habitat [89], and road system manage-
ment issues [174]. The literature indicates that around
65% of the MCIP examples were published before 2000.
After that, MCIP has typically been used as a method
with which to compare against other recently developed
heuristic methods.

The concepts that form the basis for SA were first
published by Metropolis et al. (1953) and are based on
an algorithm that simulates the cooling of materials in
a heat bath, a process known as annealing [24]. Gen-
erally speaking, SA is implemented as a 1-opt process,
where changes to a single decision variable are consid-
ered. If the changes lead to a less desirable solution, the
SA criterion is employed to determine whether or not to
accept the proposed change in the solution. We deter-
mined that the number of papers describing SA for solv-
ing spatial forest planning problems is 33, which is the
largest group among all the heuristic methods. Within
forest planning, SA has been applied to problems related

to economics [186, 220], commodity production [12, 150,
206], recreation [40], landscape design [54, 187, 188], ad-
jacency issues [65, 213], road system management issues
[66], regeneration [120], biodiversity [146], forest struc-
ture [149, 185], and wildlife habitat [224]. These results
also illustrate that SA is widely used throughout the
world, thus one of the most common heuristic techniques
in natural resource planning and research. The locations
of the work include Oceania, Asia, U.S.A., Europe, and
Canada. Most papers, however, involve the latter three
areas of the world.

TA is similar to simulated annealing in how it oper-
ates. However, TA accepts every new (proposed) solu-
tion that is not much worse (within a threshold) than the
previous current solution, whereas in SA there is only a
probability that a less desirable proposed solution would
replace the current solution [24]. We only located four
TA papers in the literature, and three of them [24, 50,
191] are used to compare with other heuristic methods.
Only one paper [25] relied on the unique TA method to
assess the ecological and economic goals in a forest plan.

Tabu search, which is one of the most extensively used
heuristic methods for solving forestry-related problems,
is a hill-climbing algorithm and combinatorial optimiza-
tion technique. The search process arrives at the best
solution by incrementally adding (or removing) decision
choices to (or from) a solution, yet avoiding a continual
re-selection of a subset of these choices based on their
influence on the objective function [21]. Tabu search
is also generally implemented as a 1-opt process, how-
ever improvements have been noted with the addition of
intensification (2-opt) or diversification (frequency anal-
ysis or strategic oscillation) processes. Tabu search ana-
lyzes a “neighborhood” of proposed changes to a solution
prior to selecting one, changes are then considered off-
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Table 4: Related papers for forest-level planning techniques described in peer-reviewed articles.
Technique categories Literature
Genetic algorithms 24, 42-45, 70, 75, 76, 148, 152, 163, 194, 225, 246, 247
Monte Carlo integer programming 8, 24, 41-43, 61, 67, 76, 89, 117, 139, 174, 177, 200, 201, 227
Stimulated annealing 12, 15, 24, 40, 41, 50, 54, 65, 66, 92, 93, 120, 146, 149, 150, 166, 172,

185-188, 191, 194, 206, 208, 213, 220, 222-224, 246, 247
Tabu search 17, 20-22, 24, 27, 30, 31, 41-45, 47, 52, 92, 134, 142, 164, 166, 172, 191,

194, 201, 246
Threshold accepting 24, 25, 50, 91, 191
Raindrop 32
Other heuristics 2, 5, 7, 24, 57, 60, 63, 66, 74, 84, 92, 93, 103, 121, 125, 130-132, 134, 137,

140, 148, 152, 156, 166, 170, 178, 184, 191, 192, 194, 204, 207, 226, 230,
231, 233, 234, 238, 241, 243, 244, 247

Goal programming 19, 38, 56, 69, 133, 138, 181, 237
Integer programming 7, 17, 21, 64, 82, 83, 156, 168, 169, 210-212, 240, 241
Linear programming 5, 15, 18, 20, 21, 33, 34, 39, 42, 45, 46, 48, 49, 55-57, 62, 64, 67, 68, 77,

79, 81, 88, 95, 98, 100, 103-106, 109, 115, 118, 141, 147, 153, 160, 162,
167, 168, 171, 173, 175, 177, 184, 186, 196, 199, 200, 202, 203, 205, 213,
215, 220, 226, 227, 229, 230, 233, 236, 238, 243

Mixed integer programming 2, 33, 35, 53, 60, 62, 73, 74, 96, 97, 101, 142, 157-159, 167, 174, 179, 180,
198, 218, 219, 230, 231, 233, 234, 238, 243, 245

Non-linear programming 99, 100, 102, 104, 106, 237
Dynamic programming 36-38, 107, 108, 110, 189
Qualitative analysis 114
Simulation 3, 10, 26, 28, 59, 85-88, 110, 113, 115, 119, 144, 162, 173, 182, 216, 239
Others 1, 4, 6, 9, 51, 80, 81, 90, 94, 122-126, 128, 143, 151, 154, 161, 176, 193,

195, 197, 214, 218, 221

limits for a number of iterations of the model. Within
forest planning it has been applied to problems related
to economics [17, 45, 172, 194], commodity production
[20, 21, 164, 191], stream sediment and temperature
[27], adjacency issues [41, 43, 44, 47, 92], wildlife habi-
tat [22, 30, 43], road system management issues [135,
201], and forest structure [52]. The literature illustrates
that the size of the planning problems in the 25 tabu
search papers we located are larger than 100 manage-
ment units (75% of them among 100 to 1,000 units, oth-
ers were larger than 1,000 units). There are usually two
types of decision procedures in tabu search: a change
to single-decision choices (1-opt moves) and changes to
two-decision choices (2-opt moves). Since 1999, almost
half of tabu search papers have discussed the advantages
and disadvantages of using combinations of 1-opt and 2-
opt. The use of 2-opt moves allowed the tabu search
procedure to find better solutions because the changes
in the objective function value are not as severe as with
using a 1-opt neighborhood alone, where changes are
made simply to the status of individual harvest units
[21].

Genetic algorithms are a population-based, nature-
inspired random search technique, and were first devel-
oped by Holland (1975) in an attempt to locate global
optimal solutions to complex problems. With genetic

algorithms, a population (set) of solutions is generated.
These are then combined randomly or deterministically
to create new solutions. The new solutions are then
modified slightly through “mutations.” The population
is then updated, and the search continues until stoppings
criteria have been recognized. In concept, the method is
not very appropriate for solving spatial forest-planning
problems unless limited amounts of genetic material
(pieces of forest plans) are incorporated into new solu-
tions. However, as its development proceeded and given
successful application in other areas, such as strategic
planning, machine learning and so on, since about 2000,
researchers and practitioners have successfully applied
GAs to spatial forest planning problems. Within for-
est planning, it has been applied to problems related
to economics [152], commodity production [75], adja-
cency issues [148], forest structure [76], wildlife habitat
[163], and landscape design [225]. Some researchers have
conducted comparisons between GA and other heuristic
methods, such as SA, and TS. For each iteration of a GA
model, there may be multiple changes to a forest plan,
and thus GA is relatively slow compared to some of the
other heuristic methods. Opinions vary on the applica-
tion of GAs to spatial forest planning problems. In the
study of Bettinger et al. (2002), it was concluded that a
basic GA was not as good as SA and TS. The same con-
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clusion was attained by Liu et al. (2006), who suggest
that simulated annealing is more efficient than genetic
algorithms for forest harvest scheduling problems. How-
ever, Pukkala and Kurttila (2005) pointed out that GA
might be better than SA and TS in spatial problems.
However, they also concluded that GA was not good
in very simple problems, and the improved performance
of GA in the most difficult problems can result from
the fact that it was the only technique where a move
could imply more than one change in the solution [194].
For spatial problems, the best GA algorithms may be
those that transfer limited genetic material in the devel-
opment of new (child) solutions. There still exist fertile
areas of subjects to research, including variable muta-
tion rates and crossover probabilities, or the use of dy-
namic penalty functions, with parameters self-modified
with the convergence process [75].

3.2 Objective Function Components The eco-
nomic and commodity production concerns of landown-
ers continue to account for the majority of objectives in
spatial forest planning problems presented in the liter-
ature (Figure 3). However, long-term sustainable for-
est management challenges have prompted researchers
to pay more attention to wildlife habitat, forest struc-
ture, biodiversity, recreation, and other objectives. As
a result, about one-third of the spatial forest planning
papers accommodate other goals in the objective func-
tion of the problems presented. These are either single-
objective optimization problems, or more commonly,
goal programming problems that use various forms of
utility functions. Interestingly, in Europe, utility func-
tions have become common aspects of spatial forest plan-
ning [143], yet in North America, penalties are more
commonly added to single parameter objective functions
[12]. Why this is the case has yet to be understood, but
may be related to the goals and objectives of both the
planners and the land managers.

The maximization of net present value (97 papers),
revenue (28 papers), and wood production (76 papers)
are still the highest-level issues of researchers and prac-
titioners, as is the minimization of discounted costs (20
papers). Policy makers and private landowners continue
to balance economic and commodity production objec-
tives with other non-product objectives, however. Ob-
jectives which include maximizing area in habitat (19
papers) and maximizing wildlife species populations (9
papers) dominate the non-product objectives that re-
searchers and practitioners have considered (table 5).
The population and habitat of a wildlife species is mostly
affected by the landscape features and spatial distribu-
tion factors that are considered in a spatial forest plan-
ning process. Forest structure (16 papers), biodiversity
(11 papers), recreation (12 papers) are also hot topics in

spatial forest planning. Other objective function com-
ponents have included those related to entomology (Hof
et al. 1997), adjacency of harvests (8 papers), landscape
metrics (6 papers), shape indexes or clustering (3 pa-
pers), site disturbances (3 papers), regeneration areas
(Jorgensen et al. 1992), and water yield (4 papers). Pa-
pers that describe single-objective problems represented
about 69.1% of the literature. Papers describing two-
parameter objective functions represented about 19.1%
of the literature, and the rest of the literature include
more than three components in the objective function.
As a result, we have seen an increase in the use of multi-
ple objective function problems in spatial forest planning
over the past ten years.

3.3 Constraint Components Two constraints have
dominated forest-planning problems over the last twenty
years: (1) those that are fragmentation related, or in-
volve harvest size or adjacency issues; and (2) those that
involve economic measures or commodity production
goals (Figure 4). The economic and commodity produc-
tion constraints represent some of the more traditional
constraints in forest plans. Economic and commodity
production constraints (table 6) include those related
to net present value [51], revenue (10 papers), budgets
(9 papers), and even wood-flow (113 papers). Adjacency
and green-up relationships, which address the juxtaposi-
tion of harvests and habitat, are perhaps the single most
widely used spatial constraints in forest planning today
[32]. The papers that involve adjacency relationships are
numerous (90 papers). While we are unable to determine
cause or effect, spatial forest planning problems seem to
have become more complex as time proceeded through
our analysis, and there has been a shift from a reliance
on exact techniques or Monte Carlo simulation to the
use of various heuristics. In addition, the constraints
incorporated into these manuscripts have become more
complex in recent years, using functional relationships
related to wildlife habitat, biodiversity, aquatic resources
and others. We assume the need to incorporate the com-
plex relationships prompted the exploration of alterna-
tive solution methods, however, one could argue that the
use of alternative solution methods allows a more exten-
sive set of resource evaluation rules to be incorporated
into forest plans. In addition, validating these problems
(when solved with heuristics) becomes problematic be-
cause exact methods often are incapable of solving the
full problem.

Other constraint functions (table 6) that have been
considered include those related to forest structure or
inventory (60 papers), road management (20 papers),
wildlife (30 papers), minimum or maximum harvest ages
(40 papers), and aquatics, which includes stream sedi-
ment (7 papers), stream temperature (2 papers), water
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Figure 3: Objectives contained in the spatial forest planning literature, by year.

Table 5: Related papers for objective functions categories in forest-level planning peer-reviewed articles.
Objective categories Literature
Maximize net present value 2, 4-8, 17-20, 27, 31, 36-39, 41-46, 50, 52, 53, 56, 57, 60, 62-64, 66, 69, 70,

73, 75-77, 80, 81, 90, 93, 107-109, 116, 122, 123, 126, 130, 134, 135, 140,
141, 143, 150, 152, 153, 157, 162, 164, 166, 169-173, 175, 185-188, 190,
194, 198-200, 202, 205, 206, 209, 213, 214, 219-221, 223, 230, 231, 233,
234, 236, 238, 241, 243-245

Maximize revenue 1, 32, 33, 48, 56, 65, 83, 102, 104, 105, 110, 121, 128, 138, 146, 158, 159,
161, 168, 174, 192-194, 196, 208, 218, 221, 227

Minimize discounted costs 20, 48, 61, 74, 89, 98, 99, 102, 103, 110, 113, 142, 154, 179, 180, 189, 201,
214,233, 234, 240

Wood flow 10, 15, 20-22, 26, 30, 32, 34, 40, 47, 54, 55, 61, 67-70, 79, 82, 84-88, 91,
100-102, 115, 117, 119, 121, 123-126, 128, 130-133, 137, 142, 148-151, 156,
160, 176, 177, 181, 182, 184, 195-197, 199, 200, 206, 211, 212, 215, 216,
221, 224, 229, 238,243, 246, 247

Maximize acres in habitat 1, 4, 22, 24, 49, 100, 137, 161, 163, 179, 180, 191, 194, 196, 197, 202, 203,
207, 240

Maximize species 33, 88, 96, 101, 126, 181, 186, 191, 204
Forest structure 40, 69, 91-93, 100, 125, 143, 149, 185, 191-193, 197, 221, 245
Biodiversity 19, 106, 122, 125, 131, 132, 140, 149, 194, 197, 222
Recreation 1, 40, 122, 123, 126, 128, 133, 143, 161, 181, 194, 195
Fire 214
Entomology 97
Adjacency 3, 9, 92, 93, 144, 150, 239, 247
Landscape metrics 54, 91, 100, 225, 246, 247
Minimize shape index or clustering 187, 188, 219
Minimize site disturbance 3, 126, 134
Regeneration area 93, 120
Water yield 95, 151, 197, 234
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Figure 4: Constraints contained in the spatial forest planning literature, by year.

yield (5 papers). In addition, other noteworthy con-
straints include fire, entomology, biodiversity, carbon,
optimal bucking, processing capacity or materials.

3.4 Type of Data used in Forest Planning Re-
search The type of the data that has been used in spa-
tial forest planning research is characterized as hypo-
thetical and real, and raster and vector. We used our
best judgment, where necessary, to make these deter-
minations. Raster data and vector data are the two
basic GIS data structures that we considered in the re-
view. Raster data is characterized by regular-shaped
grid cells (pixels) obtained from satellites or other geo-
processing methods. This data structure can be manip-
ulated quickly by a computer, thus computations are
generally more efficient. Vector data includes points,
lines, and polygons (irregularly shaped), which are de-
rived from air photo image interpretation, digitizing, and
land surveys. Since this data is relatively easy to obtain
and use, it is not uncommon to find that vector data
is more prevalent in forest planning problems compared
to raster data (Figure 5). Within the 245 papers we lo-
cated, we determined that 50 used raster data, 107 used
vector data, and 10 used both, which means that about
one-third of the papers did not explicitly refer to one
of these two data structures (we considered the review
papers to not mention either of them). Although it is
hard to argue against the fact that vector data is preva-
lent in the planning process, the trends indicate that
researchers and practitioners may be suggesting that a
single data structure is not enough to satisfy the needs
of complex spatial forest planning and research. In order
to further describe the type of data used, we classified it
as real or hypothetical (Figure 6). It seems obvious that
researchers would want to test their methods on real

data, but due to the complexity of the planning prob-
lems, researchers at many times resort to testing their
methods on hypothetical data. Among the 245 papers
we reviewed, 140 used real data, 72 used hypothetical
data, and 5 used both. Through our interpretation of
the literature, we concluded that 143 of the papers rep-
resent applications and 87 lacks an example of the use
of the techniques in applied spatial forest planning, and
of course 18 are review papers (Figure 7). As a result,
many of the applied research papers utilize hypotheti-
cal data. Two reasons for this include the difficulty in
obtaining large databases describing actual landscapes,
and the inability to obtain permission to illustrate an
organization’s data in a published research paper.

3.5 Geographic Location of the Problems While
the importance of forest planning has been realized
worldwide, research on forest planning is costly and the
objectives nowadays do not concern economic or com-
modity production. Thus, developing countries may be
short of such funds for conducting forest-planning re-
search or may not place high importance on its use
in forest management. In the literature, the countries
or continents where most of the published forest plan-
ning problems are geographically situated (Figure 8)
are: USA (68 papers), Canada (34 papers), and Eu-
rope (48 papers). However, researchers and practitioners
have also solved some spatial forest planning problems
in Oceania (6 papers), South America (7 papers), Asia
[54, 241], and Africa [181].

3.6 Spatial Concerns As we noted earlier, spatial
forest planning is used to examine patterns and trends
in the spatial development of landscapes, and focuses
on forestry and natural resource management activities
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Table 6: Related papers for constraint categories for forest-level planning peer-reviewed articles.

Constraint categories Literature
Net present value .51
Revenue 48, 138, 166, 168, 174, 175, 181, 202, 208, 238
Budget 55, 68, 82, 117, 133, 141, 164, 179, 181
Wood flow 2, 5, 6, 8, 15, 18, 20, 21, 24, 26, 27, 31, 40-49, 52, 53, 60-65, 67, 68, 70, 73,

75-77, 79-82, 84, 90, 96, 98, 99, 103-106, 108, 109, 113, 115, 116, 133-135,
137, 138, 141, 142, 148, 153, 157-162, 164, 166, 168, 169, 171, 173-178,
181, 183, 186,187, 189, 190, 196, 198, 199, 201, 205, 206, 209, 211, 215,
218-220, 222, 223, 226, 229-231, 233, 236, 238, 241, 243, 245

Stream sediment 27, 31, 151, 220, 231, 233, 238
Stream temperature 27, 31
Water yield 35, 133, 151, 205, 220
Forest structure or inventory 5-7, 17-19, 21, 28, 39, 46, 51, 52, 57, 59, 62, 64, 65, 68, 76, 77, 80, 83, 95,

104-106, 109, 110, 116, 117, 120, 138, 156-158, 160-162, 171, 173, 175, 176,
182, 185, 186, 188, 189, 196, 198, 200, 202, 205, 208, 209, 216, 227, 229,
230, 241

Adjacency 7, 9, 10, 15, 17, 24, 26, 32, 36-38, 41-45, 52, 53, 60, 61, 63-67, 76, 81-88, 90,
94, 100, 107, 108, 111, 117-119, 134, 139, 144, 146, 148, 149, 151, 154,
156-159, 166-170, 174-177, 184, 185, 190, 198, 200, 201, 208-213, 215,
216, 218-220, 222, 223, 226, 227, 230, 239, 241, 243

Road-related 2, 10, 60, 66, 74, 82, 104, 105, 134, 142, 166, 174, 177, 189, 201, 231, 233, 238
Wildlife 25, 30, 33, 34, 42, 49, 50, 62, 87, 89, 94, 100, 101, 103, 106, 133, 147, 151,

161, 172, 180, 181, 200, 202-204, 220, 224, 227, 240
Minimum or maximum 8, 19, 24-26, 28, 30, 34, 42-44, 51, 65, 67, 77, 83-88, 95, 98, 102, 103, 109,
harvest age 111, 148, 159, 161, 171, 176-178, 182, 212, 216, 227, 243, 244
Fire 199
Entomology 97, 162
Biodiversity 19, 133, 146
Carbon 135
Optimal bucking 73, 141
Processing capacity or materials 6, 48, 80
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Figure 5: Vector and Raster data in the spatial forest planning literature, by year.
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Figure 6: Real and theoretical data in the spatial forest planning literature, by year.
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and the specific tools used to develop, implement, and
evaluate forest plans and alternative policies [9]. These
are core elements of spatial forest planning. Control of
these concerns has been accomplished through the ob-
jective function and constraints of the problem formu-
lation (see tables 5 and 6, and sections 3.2 and 3.3).
Therefore, given the structure of the model being used
and the creativity of the planner, there are a number of
ways by which one can acknowledge and accommodate
spatial concerns in forest plans. An increase in the spa-
tial restrictions or objectives in forest planning problems
is evident by the results (Figure 9). In our classification
of objectives, spatial objectives include those related to
wildlife habitat (some maximizing acres in habitat are
not spatial), forest structure, adjacency, and many oth-
ers. The spatial constraints include adjacency, aquatics,
forest structure or inventory, wildlife, and road manage-
ment. Only 37 papers among 245 papers we found used
non-spatial models. Among these, a few attempt to ad-
dress hypothetical problems [16, 98, 99, 102, 113, 115,
203, 209] and related these to potential practical appli-
cation.

3.7 The use of Geographic Information Systems
(GIS) Since the introduction of GIS in natural resource
management, there has been a logical increase in the ap-
plication of GIS to forest planning (Figure 10). The role
of GIS technology in spatial forest planning has, how-
ever changed significantly, from the source of input to
the analysis tool of spatial models. One vital function
of GIS is the ability to address locational issues, and
to manage information in digital form, through an at-
tribute database. GIS has also traditionally been used in
forestry to store maps in electronic form and to make cal-
culations, such as areas and distances [14]. However, if
the spatial restrictions or objectives were not included in
a forest planning problem formulation, and subsequent
spatial analysis was necessary, GIS is used to only ad-
dress these post-plan development issues. More recently,
its use has been extended to analyses of potential land
uses and other complex problems, which have a spatial
context. However, it is not uncommon to see GIS used
as an input facilitator rather than as an analysis tool.

4 Discussion

There are still many important areas in quantitative
forest planning that need to be further studied. Al-
though we have discussed that MIP methods are limited
by problem size and are difficult to use for solving spa-
tial problems, researchers and practitioners still attempt
to use innovative formulations of MIP to obtain exact
answers. For example, two MIP harvest-scheduling for-
mulations have been developed to solve area-based ad-

jacency problems [59]. Forest planning problems with
patch size constraints or objectives that are essential for
wildlife habitat concerns have also been addressed with
new formulations of MIP [198]. Finding ways to apply
exact methods, especially mixed integer programming,
to very large problems without running into restrictions
of the number of constraints, or without requiring ex-
tensive computational time to solve the problems is an
area worth further research.

As we know, a large number of new algorithms appear
every year in the area of operations research, and apply-
ing those algorithms to forest planning practice is an
interesting topic. One relevant classification of heuristic
methods is to separate heuristics that are based on pop-
ulations of solutions from heuristics that are based on
a single change to a solution (point-based algorithms).
A point-based algorithm will only have one unique solu-
tion per iteration, and we update the best one with the
new obtained solution if it is better than the best we
have found before. With a point-based algorithm, we
only need to define the current solution and use a meta-
heuristic to obtain a new solution. With a population-
based algorithm, we have to define the current popula-
tion and new population in each iteration. Additionally,
we also need to initiate the population size and define the
maximum population size allowed. Other population-
based heuristic methods like particle swarm optimiza-
tion, which has been successfully used in other areas
including optimization of artificial neural networks, im-
age processing, and computational biology, could also
been applied in forest planning. More discussion of the
advantages and disadvantages should follow, and they
should be tested against various standard forest plan-
ning problems.

No matter what heuristic techniques one adopts to
solve spatial forest planning problems, choosing the ap-
propriate parameters seems to require the most atten-
tion. This issue is treated lightly in many papers, thus
a broader explanation of the parameters for typical for-
est planning problems is needed in future work. One
might ask whether there ways to estimate the parame-
ters based on the type and size of a problem (figure 11),
rather than needing to perform a number of trials to
locate the acceptable range of parameters. Ultimately
we need to find ways to estimate the appropriate pa-
rameters rather than have the user try to identify them,
taking this process out of their hands.

Addressing limitations of the search process is also an
area requiring more work. As we discussed, it is proba-
bly better for GA to swap small amounts of genetic ma-
terial during each iteration of a spatial forest planning
process, because the transfer of large amounts of genetic
material during the crossover results in numerous viola-
tions of spatial constraints. The same is true in spatial
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Figure 9: Number of papers that include spatial goals, by year.
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forest planning problems when the mutation rate is high.
After addressing these types of limitations, GA and its
modifications could be more effectively used for spatial
forest planning problems. Recently, an intelligent mech-
anism of combining standard heuristic methods such as
TS, SA, TS, and the raindrop method has been devel-
oped by Li (2007). Using such a mechanism to study
how to intelligently combine GA with other heuristics
is new, and needs additional research to determine the
most effective meta heuristic model.

Since heuristics cannot guarantee optimality, the de-
velopment of a measure of quality is necessary. What we
usually do in validations heuristic results is to assess the
solution value, solution running time, complexity of pro-
gramming codes, and various statistics including maxi-
mum value, minimum value, mean, standard deviation,
and the estimated global optimum. These are often com-
pared against results generated by other heuristic tech-
niques, or ideally against an exact solution generated
by traditional mathematical programming techniques.
However, if the exact solution is elusive, a comparison
against other heuristics only provides relative validation.
One might logically ask about the quality of solutions
generated by the other heuristics, and whether this com-
parison sheds light on overall solution quality. As a re-
sult, one gap in the literature is the development of a
solution quality index. This opens an area of research
for professional statisticians to apply new statistics to
validate heuristic results.

Another fertile area of research involves integrating
the theories and technologies of heuristics with rela-
tionships developed in other areas. For example, we
could develop effective partnerships between landscape
ecology and forest planning. Landscape ecologists have
made significant contributions to the subject the con-
servation biology. Since forestry entails the alteration
of landscapes, the theory and tools of landscape ecol-
ogy could be integrated into a forest planning process.
As the field of landscape ecology grows, its concepts
and tools (e.g. remote sensing, GIS, spatial statistics,
spatially explicit modeling) are increasingly being used
in ecological disciplines including forestry [78]. As we
know, modeling ecological processes across scales, in-
cluding scaling up and scaling down, is essential in land-
scape ecology. In forest planning, we divide the plan-
ning into strategic, tactical and operational levels. We
will also face the scaling up and scaling down problem.
We could work together with landscape ecologists to in-
tegrate these problems. For example the objective func-
tion with respect to maximizing acres in wildlife habi-
tat, Bettinger et al. (2002) mentioned that could be di-
vided to strata-based goals, minimum-patch-size goals,
and complementary-patch goals, to illustrate that the
range of factors one can consider.

At this time, we have not considered the publications
from the conference proceedings, graduate-level disser-
tations and public agencies and advances have been re-
ported in these gray literature, so we leave this job for
other researchers. In addition, although we have found
theoretical papers in our review that do not specifically
relate to spatial forest planning, we did not study the re-
lationship between these and any related applied paper.
This should be a time-consuming, but interesting job,
because we may eventually infer the kinds of theory in
that may have successful application in forest planning.

5 Conclusions

We investigated the difference between the early pe-
riod (1995 and prior) and recent period (2000 and after)
with respect to spatial forest planning research (Figure
12). The results illustrate that researchers and practi-
tioners have relied more on heuristic techniques in the
latter period than the early period. At the same time,
we find that researchers and practitioners still attempt
to use traditional, exact methods no matter what the
period is being considered. Due to the increase in the
complexity of the planning environment, the type of ob-
jective function has shifted slightly from commodity pro-
duction to other concerns. When the constraint compo-
nents in the papers are considered, we find that reliance
on wildlife, aquatics, and biodiversity constraints have
not changed much as time has passed. However, less
emphasis has been placed on economics or commodity
production in the latter period than the early period,
and more emphasis has been placed on other constraints
in the latter period.

The type of spatial forest planning problems being
solved has evolved over the past 20 years. The trends
suggest that forest-level planning publications have in-
creased in the journals examined over the past fifty
years, however the number of publications seem to have
stabilized in the last few years [23], and perhaps has
been decreasing since 2002. While we found the rate
of publication easing in the last few years, the reason
for this is not clear. For example, one could argue that
the science has matured significantly, and that novel ap-
proaches to illustrating solutions to complex manage-
ment problems are becoming moot. In fact many ap-
proaches to spatial forest planning have been proposed.
Perhaps the questions now lie with determining efficient
methods for designing constraint sets, or with design-
ing adaptive heuristics that leave parameterization to
the algorithm rather than the user. The rate has not
eased due to a reduction in available journals. In fact
it is arguable that the aims and scope of many inter-
national journals leave open the opportunity to publish
spatial forest planning research. In addition, a number
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Figure 12: Differences between the early period and recent period.

of new online journals have appeared in the last decade,
providing more outlets for research results. One aspect
concurrent with the maturing of the science relates to
the validation of results. Perhaps higher standards in
this area have influenced the quality of peer-reviewed
literature, although we did not test this hypothesis here.

It is difficult to predict which methods will dominate
quantitative forest planning in the future. The two com-
prehensive reviews we located both discussed the possi-
bility that the hierarchal structure could be divided into
strategic, tactical and operational planning. Strategic
forest plans attempt to develop broad strategies related
to harvest levels, habitat levels, and economic expec-
tations. Tactical forest plans determine where activi-
ties will be placed on a landscape and may require in-
teger decision variables [23]. The operational level in-
volves the determination of a land use plan for an area
of the forest, and forest operations problems that repre-
sent short-term issues, such as harvesting, production,
hauling, planting, pest control, fire management, and
road building and maintenance [166]. Since exact meth-
ods have the advantage of ensuring that the solution one
finds is optimal, the use of these seems valuable for all
three levels of planning. However, most planning prob-
lems we now face are either tactical or operational, and
involve complex problems with discrete integer variables,

thus researchers and practitioners have embarked upon
solving these problems using heuristic methods.

From this extensive and world-wide forest planning
review, we are convinced that the past 20 years rep-
resents the seminal period for the development of the
spatial forest planning methods. The literature review
results convince us that methods used in spatial forest
planning have shifted from exact algorithms to heuristic
techniques. At the same time, researchers and practi-
tioners have attempted to adopt various other methods
to solve forest planning problems. In addition to the eco-
nomic and commodity production objectives, an increase
in ecological and social objectives has been noted. Be-
sides economic and commodity production constraints,
adjacency and green-up relationships are now also con-
sidered important constraints for industrial and man-
agers in North America. Compared with raster data,
vector data are more often used in the planning process.
Hypothetical data are used by researchers to introduce
new methods or compare various methods. To the extent
that forest planning is of concern to forest policy makers,
hypothetical examples are of as much value as specific
real-life examples, although it was not unexpected to
find that 35% of the papers failed to address a real-life
problem. The geographic extent of the papers we lo-
cated is world-wide, however not evenly spread across
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the world: the United States, Canada, and Europe pro-
vide most of the work in this area. Spatial restrictions
or objectives in the process are the trend for the for-
est planning problems. GIS technology is a widely-used
tool in forestry and natural resource management, yet
thus far has had limited application (generally used as
an input tool) in the forest planning process. More re-
search should be conducted to continue to integrate GIS
with forest planning algorithms. The gaps in knowledge
that we have identified leave room for further investi-
gation into mixed integer methods, applications of new
heuristics to spatial problems, exploration of appropriate
heuristic parameters, development of a solution quality
index, integration with other fields utilizing spatial re-
lationships, and a broader examination of the non-peer-
reviewed literature.
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[186] Öhman, K. and L. O. Eriksson 2002. Allowing
for spatial consideration in long-term forest plan-
ning by linking linear programming with simulated
annealing. Forest Ecology and Management. 161:
221-230.
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[188] Öhman, K. and T. Lamas 2005. Reducing forest
fragmentation in long-term forest planning by using
the shape index. Forest Ecology and Management.
212: 346-357.

[189] Palander, T. 1995. Local factors and time-
variable parameters in tactical planning models:
a tool for adaptive timber procurement planning.
Scandinavian Journal of Forest Research. 10: 370-
382.

[190] Pickens, J. B., B. M. Kent and P. G. Ashton 1990.
The declining even flow effect and the process of na-
tional forest planning. Forest Science. 36(3): 665-
679.

[191] Pukkala, T. and T. Heinonen 2006. Optimizing
heuristic search in forest planning. Nonlinear Anal-
ysis. 7: 1284-1297.

[192] Pukkala, T. and J. Kangas 1993. A heuristic op-
timization method for forest planning and decision
making. Scandinavian Journal of Forest Research.
8(4): 560-570.

[193] Pukkala, T. and J. Kangas 1996. A method for
integrating risk and attitude toward risk into forest
planning. Forest Science. 42(2): 198-205.

[194] Pukkala, T. and M. Kurttila 2005. Examining the
performance of six heuristic optimisation techniques
in different forest planning problems. Silva Fennica.
39(1): 67-80.

[195] Pukkala, T., T. Nuutinen and J. Kangas 1995.
Integrating scenic and recreational amenities into
numerical forest planning. Landscape and urban
planning. 32: 185-195.

[196] Puttock, G. D., I. Timossi and L. S. Davis 1998.
BOREAL: a tactical planning system for forest
ecosystem management. The Forestry Chronicle.
74: 413-420.

[197] Rauscher, H. M., F. T. Lloyd, D. L. Loftis and M.
J. Twery 2000. A practical decision-analysis process
for forest ecosystem management. Computers and
Electronics in Agriculture. 27: 195-226.

[198] Rebain, S. and M. E. McDill 2003. A mixed-
integer formulation of the minimum patch size prob-
lem. Forest Science. 49(4): 608-618.

[199] Reed, W. J. and D. Errico 1986. Optimal harvest
scheduling at the forest level in the presence of the
risk of fire. Canadian Journal of Forest Research.
16: 266-278.

[200] Rempel, R. S. and C. K. Kaufmann 2003. Spa-
tial modeling of harvest constraints on wood supply
versus wildlife habitat objectives. Environmental
Management. 32(5): 646-659.

[201] Richards, E. W. and E. A. Gunn 2003. Tabu
search design for difficult forest management op-
timization problems. Canadian Journal of Forest
Research. 33(6): 1126.

[202] Roise, J., J. Chung, R. Lancia and M. Lennartz
1990. Red-cockaded woodpecker habitat and tim-
ber management: production possibilities. South-
ern Journal of Applied Forestry. 14: 6-12.

[203] Roloff, G. J., B. Carroll and S. Scharosch 1999.
A decision support system for incorporating wildlife
habitat quality into forest planning. Western Jour-
nal of Applied Forestry. 14(2): 91-99.

[204] Rosing, K. E., C. S. ReVelle and J. C. Williams
2002. Maximizing species representation under lim-
ited resources: a new and efficient heuristic. Envi-
ronmental Modeling and Assessment. 91-98.

[205] Rowse, J. and C. J. Center 1997. Forest harvest-
ing to optimize timber production and water runoff.
Socio-Economic Planning Sciences. 32(4): 277-293.

[206] Seo, J.-h., F. Vilcko, S. S. Orois, S. Kunth, Y.-
m. Son and K. von Gadow 2005. A case study of
forest management planning using a new heuristic
algorithm. Tree Physiology. 25(7): 929-938.

[207] Sessions, J. 1992. Solving for habitat connections
as a steiner network problem. Forest Science. 38(1):
203-207.

mailto://shany@warnell.uga.edu
http://mcfns.com


Shan et al. (2009)/Math.Comput. For.Nat.-Res. Sci. Vol 1, No 2, pp. 86–112/http://mcfns.com 111

[208] Sessions, J., D. Johnson, J. Ross and B. Sharer
2000. The Blodgett plan: an active-management
approach to developing mature forest habitat. Jour-
nal of Forestry. 98(12): 29-33.

[209] Sherali, H. D. and C.-M. Liu 1990. Identifica-
tion of a network substructure and some algorith-
mic considerations for large-scale harvest scheduling
problems. Forest Science. 36(3): 599-613.

[210] Snyder, S. and C. ReVelle 1996. The grid packing
problem: selecting a harvesting pattern in an area
with forbidden regions. Forest Science. 42(1): 27-
34.

[211] Snyder, S. and C. ReVelle 1996. Temporal and
spatial harvesting of irregular systems of parcels.
Canadian Journal of Forest Research. 26: 1079-
1088.

[212] Snyder, S. and C. ReVelle 1997. Dynamic se-
lection of harvests with adjacency restrictions: the
SHARe model. Forest Science. 43(2): 213-222.

[213] Tarp, P. and F. Helles 1997. Spatial optimiza-
tion by simulated annealing and linear program-
ming. Scandinavian Journal of Forest Research.
12(4): 390-402.

[214] Teeter, L. D. and A. A. Dyer 1986. A multiat-
tribute utility model for incorporating risk in fire
management planning. Forest Science. 32(4): 1032-
1048.

[215] Thompson, E. F., B. G. Halterman, T. J.
Lyon and R. L. Miller 1973. Integrating timber
and wildlife management planning. The Forestry
Chronicle. 49: 247-250.

[216] Thompson, J. R., K. N. Johnson, M. Lennette,
T. A. Spies and P. Bettinger 2006. Historical dis-
turbance regimes as a reference for forest policy in
a multiowner province: a simulation experiment.
Canadian Journal of Forest Research. 36(2): 401-
417.

[217] Torres-Rojo, J. M. and J. D. Brodie 1990. Adja-
cency constraints in harvest scheduling: an aggre-
gation heuristic. Canadian Journal of Forest Re-
search. 20: 978-986.
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