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Abstract. The objective of this study is to analyse the density-dependent dynamics of growth and mor-
tality in an unthinned Eucalyptus grandis spacing experiment on a homogenous site in Zululand/South
Africa. Specifically we propose models that describe how the (log) basal area develops in unthinned stands.
Our data clearly indicate that mortality varies enormously with planting density. We therefore develop
and investigate models that explicitly take mortality into account. To do so we first model the conditional
distribution of log basal area as a function of age and the number of trees that are concurrently alive. The
last of these covariates is generally unknown in advance, which would seem to render it inapplicable for
the purpose of modeling the distribution of future basal area. We show how it is nevertheless possible to
estimate the distribution of the number of surviving trees from the available data, and thereby to ‘integrate
out’ the effect of this random variable in order to estimate the (unconditional) distribution of the log basal
area for each planting density. This is achieved by fitting Weibull distributions to the lifetimes of the trees
in the four available plots. A number of different models for the log basal area are compared.

Our estimates indicate that the distribution of the future basal area in an unthinned Eucalyptus gran-
dis forest is not independent of the planting density, within the range of the experimental densities
investigated in this study. Our results provide clear evidence that planting density has strong and
long-lasting effects on basal area. Furthermore the estimates indicate that these effects persist for at
least 40 years and that, even after length of time, the rate of convergence to a common condition is very slow.

Keywords: Planting density, spacing experiment, Weibull distribution, basal area growth

1 Introduction

The effect of planting density on the growth and sur-
vival of trees has been the subject of numerous studies.
Neighbouring trees compete with their crowns as well
as their roots for the available growing space. To sur-
vive in a competitive environment a tree must build up
and maintain phytomass in order to access resources in
the occupied growing space (Matyssek, 2003). Tree den-
sity affects the spatial distribution of light and temper-
ature, and the availability of moisture and nutrients in
a forest. Tree diameter growth is especially sensitive to
changes in density. This effect was first demonstrated by
Craib (1939) in an analysis of a South African Correlated
Curve Trend (CCT)-spacing trial.

The CCT experiment is a classic spacing trial designed
to predict the growth in plantations of various species of

pine and eucalyptus for a wide range of planting densi-
ties, varying between extremely dense (2965 stems per
ha) and free growth (124 stems per ha). The majority
of these CCT experiments were devised by O’Connor
(1935) and initiated in 1936 and 1937. The typical CCT
experiment consists of 18 plots, covering 0.04 ha each,
some with up to four replications. Nine of the 18 plots
were left unthinned, the other nine were subjected to
various thinning regimes. Detailed descriptions of the
design and analysis of the CCT studies were published
by Marsh (1957), O’Connor (1960), Burgers (1976), Van
Laar (1982), Bredenkamp (1984), Gadow (1987) and
Gadow and Bredenkamp (1992). The effects of site qual-
ity and stand density on tree growth may be confounded.
Thus, controlled experiments on a uniform site are use-
ful if the aim is to study the effect of density on tree
growth.
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The objective of this study is to analyse the density-
dependent dynamics of growth and mortality in four ex-
perimental plots planted at different spacings on a homo-
geneous site. Particular emphasis will be placed on es-
timating the (unconditional) distribution of stand basal
area using a model that explicitly takes account of the
probability of tree survival.

2 Material and Methods

This section presents the complete dataset used in
this study and explains the modelling approach and the
methods of model evaluation.

2.1 The dataset The material used in this study was
derived from the Eucalyptus grandis spacing experiment
“Langepan” which was established in September 1952
on the coastal plain of KwaZulu-Natal in South Africa,
located at 28◦36’ S and 32◦13’ E. The altitude is about
60m above sea level. The mean annual rainfall on the ex-
perimental site is 1400mm, of which about 70% falls dur-
ing the months of October to April. The coastal plain is
an elevated marine platform, which consists essentially
of a thick deposit of wind-borne sand. The sands are
acidic and poor in organic matter due to rapid decom-
position in the moist sub-tropical climate and the aero-
bic condition of the surface soils. The moisture storage
capacity is very low, but this shortcoming is moderated
by great rooting depth. The mean annual temperature
is 21.8◦C. Frost is virtually unknown along the coastal
plain.

The design of the Langepan experiment is a modifi-
cation of the standard CCT spacing experiments which
were planted throughout the forestry regions of South
Africa. The most important modification is the very
high planting density of 6726 trees per ha in Plot 1. The
Langepan experiment is a randomized complete block
design with three blocks and twenty treatments. Twelve
of these are unthinned spacing treatments, representing
the so-called basic series. The remaining eight treat-
ments were subjected to different types of thinnings and
are known as the thinning series. Additional detail is
given by Bredenkamp et al. (2000). Currently only one
of the original three blocks remains. Four plots of the
basic series, which are still intact, were selected for the
present study. Each plot covers an area of 0.04047 ha
and is surrounded by a buffer strip (30m around each
measurement plot) which is subject to the same treat-
ment as the plot.

The complete dataset used in this study is presented
in Table 1. For analysis standardised data per ha were
used. The number of surviving trees per ha are displayed
in Figure 1.
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Figure 1: Observed density (stems per ha) as a function
of age.

2.2 Modelling Approach One of the traditional
methods used in the analysis of forest growth and tree
survival is based on the state-space approach described
by Garćıa (1994), where the system is characterized by
a set of state variables which are assumed to be known
at a given initial stage; transition functions are used
to project all or some of the state variables to future
stages. In selecting the state variables, the principle of
parsimony must be taken into account. This means that
the model should be the simplest one among alternative
models which are consistent with the dynamics of the
biological system (Milsum, 1966; Vanclay, 1995; Gadow,
1996; Burkhart, 2003).

In forests which are thinned ahead of natural mor-
tality, dominant height and stand basal area (Gi) may
be sufficient for estimating the system state at a given
age (Pienaar and Turnbull, 1973; Decourt, 1974; Garćıa,
1988). In unthinned forests, especially those which are
planted at high densities, it has been found to be nec-
essary to include tree mortality, maximum density or
the number of surviving trees (Ni) per unit area (Am-
ateis et al., 1995; Álvarez-González et al., 1999; Garćıa,
2003; Diéguez-Aranda et al., 2006; Castedo-Dorado et
al., 2007).

The Langepan trial is an unthinned spacing experi-
ment which includes very high planting densities. Thus,
tree mortality is a very important component of the bi-
ological system. In contrast, height growth is regarded
as density independent. The emphasis of the study is
density-dependent dynamics of growth and mortality.
Thus, height growth is not considered in the analysis
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Table 1: The observations. Age (Ai) refers to years after planting, Ni the number of surviving trees, and Gi the
basal area (m2) in the 0.04047 ha plots.

Index Age Plot 1 Plot 3 Plot 4 Plot 5
i Ai Gi Ni Gi Ni Gi Ni Gi Ni

0 0.00 0.00 272 0.00 120 0.00 60 0.00 40
1 1.92 0.52 263 0.33 111 0.22 60 0.12 40
2 5.00 1.62 181 1.43 105 1.32 59 5.00 40
3 10.00 2.29 152 2.06 91 2.07 59 10.00 40
4 14.00 2.68 142 2.39 82 2.43 57 14.00 39
5 20.00 2.94 107 2.86 79 2.85 53 20.00 39
6 24.33 2.87 64 2.74 48 3.00 48 24.33 37
7 27.67 2.82 56 2.92 48 3.07 45 27.67 37
8 39.50 2.80 31 2.93 27 2.95 27 39.50 23

of our data.

As a first approach for estimating basal area we use
the linear form of two models that had been applied
in the past, designated here as the “Schumacher” and
“Rodŕıguez-Soalleiro” models. Both models use age and
initial basal area as explanatory variables. However, in
an unthinned spacing experiment, especially one with
high planting densities, basal area growth is strongly
affected by tree mortality. We therefore introduce an al-
ternative modeling approach which takes account of the
number of surviving trees as an additional explanatory
variable. The initial age and basal area are assumed
to be known, but the number of trees that survive to a
given age is a random variable whose distribution can
be modelled, which we do using a binomial distribution.
Although the initial number of live trees (N0) is known,
the probability that a given tree will survive to the given
age has to be estimated. We do this by assuming that
the lifetime of the trees follows a Weibull distribution.
The parameters of the Weibull distribution, which de-
pend on N0, can be estimated (for each N0 seperately)
using the method of maximum likelihood. In that way
the second parameter of the binomial distribution (‘the
probability of success’) becomes available. In turn this
allows us to explicitly take into account the variability
in the basal area that is attributable to the uncertainty
regarding the number of trees that will survive. This
source of variation is ignored if one simply uses the ex-
pected number of trees that will survive in the model
for basal area. The latter approach provides a model for
the distribution of the basal area under the condition
that (precisely) the expected number of trees survive.
Our approach provides a model that takes account of all
possible survival outcomes (except the case in which no
trees survive); in other words it provides a model for the
unconditional distribution of basal area.

2.2.1 Models for area growth Traditionally, basal
area at time point i (Gi) is estimated as a function of
age at time point i − 1 (Ai−1), the basal area at time
point i − 1 (Gi−1), and one or two other covariates. We
denote this as the “initial approach”. The approach pro-
posed here, which we will refer to as the “alternative
approach”, is to allow the distribution of basal area to
depend on the number of surviving trees at time point
i. This number is of course unknown in advance but, as
was indicated above, its distribution can be estimated.
For the estimation of basal area interval data of succes-
sive measurements are used, starting from the age at
planting.

Initial approach: Models that do not take ac-
count of survival

A straight-forward model to estimate basal area is an
age-related model, which was first proposed by Schu-
macher (1939):

log(Gi) − log(Gi−1)
Ai−1

Ai
= α1

(
1 − Ai−1

Ai

)
(1)

One further model was proposed by Rodŕıguez-Soalleiro
et al. (1995):

log
(

Gi − Gi−1

Ai − Ai−1

)
= α0 + α1 log(Gi−1)

+ α2 log(Ai−1) (2)

Alternative approach: Models that involve the
number of surviving trees

We begin by noting (see Figure 2) that there is an ap-
proximately linear relationship between Gi−1/Ni−1 and
Gi/Ni, i = 1, 2, . . . , 8. From this starting point, and af-
ter taking logs, we add two further covariates, namely
the age difference, (Ai − Ai−1), and the square of the
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age, A2
i . The latter was included following an analysis

of the residuals of the model without this term. The
resulting model is
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Figure 2: Relationship between the ratios Gi−1/Ni−1

and Gi/Ni.

log(Gi) = α0 + α1 log(Ni) + α2 log
(

Gi−1

Ni−1

)
+ α3(Ai − Ai−1) + α4(Ai)2 (3)

A further refinement of the model would be to include
the ratio of the heights at ages Ai−1 and Ai as an ad-
ditional covariate. Since the heights are not available,
we used a proxy for them, based on a logistic function
approximation, to obtain:

log(Gi) = α0 + α1 log(Ni) + α2 log
(

Gi−1

Ni−1

)
+ α3(Ai − Ai−1) + α4(Agei)2

+ α5 log
(

1 − exp(k Ai)
1 − exp(k Ai−1)

)
(4)

Finally, we also considered a simplified version of the
above model having no time-lagged covariates, i.e. that
describes log(Gi) as a function of only Ni and Ai. Apart
from being much simpler, this has the (minor) advantage
that it overcomes the problem of dealing with undefined

logarithms1.

log(Gi) = α0 + α1 log(Ni)
+ α2 log(1 − exp(k Ai))
+ α3(Ai) + α4(Ai)2 (5)

We emphasise that, although Models (3)-(5) are con-
ditional on the values of Ni, and although the observed
Ni were used to estimate the parameters of these con-
ditional models, we will go on to develop unconditional
versions of the models that do not depend on knowing
Ni, the number of trees that will survive to age Ai. How-
ever, the implementation of the unconditional versions
requires an estimate of the parameters of the distribu-
tion of Ni, and we now outline how this can be obtained.

2.2.2 Probability distribution for the number
of surviving trees Ideally, in order to estimate life-
time distribution of trees planted at a given density, one
would like to know the exact age of each tree when it
dies. Such information can be used to select a suit-
able distributional form. However, the data available
to us are severely interval-censored. In Plot 1, for ex-
ample, we only know that 9 trees died in the interval
0 to 1.92 years after planting, 82 died in the interval
1.92 to 5 years after planting, and so on. Secondly, the
experiment covers a time-span that is evidently shorter
than the maximum lifetime of the trees — many trees
were still alive when the last observations were made
39.50 years after planting. These deficiencies in the ob-
servations force us to make assumptions regarding the
form of the model that describes the lifetime distribu-
tion. We selected the Weibull distribution because it is
widely used to describe lifetimes, and also because it has
only 2 parameters. The cumulative distribution function
of the lifetime of the trees is assumed to have the form
(t ≥ 0; γ, β > 0)

P (lifetime ≤ t) = F (t; γ, β) = 1 − exp
(
− t

β

)γ

. (6)

The parameters describe the shape (γ) and scale (β) of
the distribution. It is assumed that the parameters, and
hence the lifetime distribution, depend on the planting
density, i.e. on N0, and so the parameters are estimated
separately for each plot. The parameters are estimated
using the maximum-likelihood method which can accom-
modate interval-censored data.

Let Ni,k, i = 0, 1 . . . , 8; k = 1, 3, 4, 5, be the number
of surviving trees aged Ai in Plot k (see Table 1), and
let Di,k = Ni,k −Ni−1,k, i = 1, 2 . . . , 8. Then Di,k is the
number of trees in Plot k that died between Ai−1 and

1To avoid taking logs of zero in Models (1)-(4) the zero value
of G0 at planting age is replaced by a value slightly above zero.
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Ai years after planting. The likelihood function for the
two parameters of the Weibull distribution for Plot k,
namely γk and βk, is given by (see, e.g., Cox and Oakes,
1984):

L(γk, βk | A1, . . . , A8, D1,k, . . . , D9,k) =
F (A1; γk, βk)D1,k

· [F (A2; γk, βk) − F (A1; γk, βk)]D2,k

· [F (A3; γk, βk) − F (A2; γk, βk)]D3,k

. . . · [F (A8; γk, βk) − F (A7; γk, βk)]D8,k

· [1 − F (A8; γk, βk)]N8,k (7)

Note that the last term takes care of the number of trees
that are still alive when the last observation was made.
There are no explicit expressions for the maximum likeli-
hood estimators; the likelihood has to be maximized us-
ing numerical maximization software, such as the func-
tion ‘nlm’ or ‘optim’ in the statistical package R (Ihaka
and Gentleman, 1996).

The parameter estimates, γ̂k and β̂k, k = 1, 3, 4, 5, are
displayed in Figure 3, plotted against the correspond-
ing planting densities (in stems per ha). Also shown are
exponential functions that were fitted to these points.
This relationship is potentially useful in that it allows
one, by means of interpolation, to estimate the param-
eters of the lifetime distribution for planting densities
that are different from those that were investigated in
the experiment. In a second estimation pass we there-
fore estimated these two exponential functions directly
from the original data by maximizing a single combined
likelihood function. Since the resulting curves did not
change much, we will not give details of the second, and
more complicated, computation here.

Having estimated the survival distribution as a func-
tion of N0 we are now in a position to estimate the dis-
tribution of the number of trees that are survive any
given age t. Given that there are N0 trees initially, the
number of trees that survive to age t can be regarded as
a binomial experiment with N0 trails. Each trial results
in one of two mutually exclusive outcomes, survival and
death. The Weibull distribution is used to estimate the
binomial parameter, namely the probability that a tree
survives longer than t time units, say pt (also called the
‘probability of success’). The number of surviving trees
t time units after planting is binomially distributed ran-
dom variable with parameters N0 and pt = 1−F (t; γ, β)
where γ and β can be estimated the exponential func-
tion displayed in Figure 3 from the known value N0.
The probability that precisely n of the N0 trees survive
longer than t time units is given by(

N0

n

)
pn

t (1 − pt)N0−n, n = 0, 1, . . .N0. (8)
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Figure 3: Weibull shape and scale parameters estimated
from the number of trees per ha planted.

Thus (and, for simplicity, dropping the subscript k)
Ni, i = 1, 2, . . . , 8 is binomially distributed with first
parameter (the number of trials) equal to N0 and sec-
ond parameter (the probability of success) is given by
1− F (Ai; γ, β).

We note that the conditional distribution of Ni,
given Ni−1, is also binomial, but the number of tri-
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als is Ni−1, and the probability of success is given by
1 − F (Ai; γ, β)/(1 − F (Ai−1; γ, β)). This probability is
computed using a left-truncated Weibull distribution so
as to take account of the fact that the Ni−1 trees have
already survived Ai−1 time units after planting.

2.2.3 Unconditional distribution stand basal
area Models (3)-(5), which are based on the ‘alterna-
tive approach’, contain the covariate Ni, the concur-
rent number of surviving trees. These models only de-
scribe the conditional distribution of log(Gi) for given
values of Ni. We will assume that these conditional
distributions are normal and have a constant variance.
The unconditional distribution of log(Gi) is then a mix-
ture distribution; its density is a weighted sum of condi-
tional (normal) densities taken over all possible values of
Ni. The weights are given by the binomial probabilities
P (Ni = n). Thus the density of log(Gi), which is not
itself normal, is given by:

N0∑
n=0

P (Ni = n)·

φ(E(log(Gi)|Ni = n, Ni−1, Gi−1, Ai−1, Ai), σ2),

where φ(μ, σ2) represents the density of a normal dis-
tribution with mean μ and variance σ2. Although the
range of Ni extends from 0 to N0, we will omit the term
with n=0 in the above sum in order to avoid taking
the log of zero when computing the unconditional dis-
tributions. This is reasonable if Ai is not ‘too large’ or,
more precisely, if Ai is such that the probability that all
N0 trees will die within Ai years after planting is small
enough to be negligible.

The main motivation for considering Models (3)-(5)
is to take account of tree survival in the modeling of
basal area, because, as is illustrated in Figure 1, the rate
of survival in unthinned forests can vary enormously as
a function of planting density. One can take survival
into account by including Ni as a covariate in the model
for basal area. However, having done this, one must
then also account for the variability in the distribution
of basal area that is attributable to uncertainties regard-
ing how many trees will survive. This can be done by
computing the unconditional distribution of the (log)
basal area. We note that this is not the same as simply
replacing the term Ni in the conditional distribution of
log(Gi) by E(Ni), because the distribution of log(Gi)
is different to that of log(Gi|Ni = E(Ni)). The latter
is a normal distribution, whereas the former is a mix-
ture of normals. The mixture distribution has following
moments (Frühwirth-Schnatter, 2006):

Expectation:

E(log(Gi)) = μ ≈
N0∑

n=1

P (Ni = j)μn (9)

Variance:

E(log(Gi) − μ)2) ≈
N0∑

n=1

P (Ni = n)(μ2
n + σ2

n) − μ2

(10)

where μn denotes the mean, and σ2
n the variance, of the

conditional distribution of log(Gi|Ni = n). We assume
that all the conditional variances are equal. The above
moments are approximations because we have omitted
the summand for n = 0.

2.2.4 Model evaluation criteria Three different
model selection criteria were applied for comparing
the models that describe the log of stand basal area
growth. The Bayesian Information Criterion: BIC =
−2 log(L(θ̂)) + log(n)d, where log(L(θ̂)) represents the
estimated maximum log-likelihood of the model, n the
sample size and d the number of estimated parameters.
This affords a balance between the quality of the fit,
which is measured by the log-likelihood term, and com-
plexity, as measured by the ‘penalty term’ log(n)d. The
model with the smallest BIC is judged best. Akaike’s
Information Criterion, AIC = −2 log(L(θ̂)) + 2d), has a
similar structure but uses a different penalty term. Ex-
cept for very small samples the BIC applies a more severe
penalty for complexity than does the AIC. For a discus-
sion of these criteria see, e.g., Zucchini (2000). We also
report values of the residual standard error: RSE=

√
σ̂2,

where σ̂2 =
∑

i(Yi−Ŷi)
2

degrees of freedom is the estimated residual
variance. In terms of this criterion the model for which
RSE is the minimum should be selected (Maddala and
Lahiri, 2009).

3 Results

In this section we present the parameter estimates and
the results for the models for tree survival and basal area
growth that were outlined in the previous section.

3.1 Tree Survival The parameters of the exponen-
tial relationship between the Weibull parameters and
the number of planted trees per ha are estimated using
the maximum likelihood method. The maximization is
done using a stochastic global optimization method im-
plemented in the statistical software R (for details see
Belisle (1992)). The interval data of successive measure-
ments, all starting from the age at planting, were used,
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which gives a total of 32 data points. The estimated
exponential function of the shape parameter, γ, and the
scale parameter, β, of the Weibull distribution are given
by the following functions of N0 (measured in units of
stems per ha):

γ = 3.5927 exp(−0.000225 N0) (11)
β = 61.4138 exp(−0.000152 N0) (12)

These relationships make it possible to estimate the
parameters of the Weibull distribution function for arbi-
trary planting density in the range 0 to 7000 stems per
ha (see Figure 3). The estimated Weibull parameters
for each plot of the dataset are shown in Table 2. The
Weibull distribution functions for Plots 1,3,4,5 are dis-
played in Figure 4. It can be seen that the probability
that a tree dying in the very dense Plot 1, is initially
much greater than in the other, less dense, plots. As
expected, the probability of tree survival increases with
decreasing number of trees per unit area. Although the
distribution functions in Figure 4 are displayed for the
age range 0 to 120 years, it has to be kept in mind that
the observation interval covered less 40 years. Conse-
quently, the available data do not provide information
about the lifetime distribution of trees that are older
than 40 years; the extrapolations beyond that age are
based on the assumption that the Weibull model con-
tinues to hold beyond 40 years. Since this assumption
cannot be checked with the available data, the said ex-
trapolations obviously need to be regarded as hopeful
approximations.

Table 2: Weibull Parameter estimated for each plot from
equations (11) and (12).

Plot 1 Plot 3 Plot 4 Plot 5
Shape 0.79 1.84 2.57 2.88
Scale 22.14 39.17 49.04 52.87

3.2 Basal area growth The parameters of all mod-
els were estimated using linear least squares techniques
available in the software environment R. For model es-
timation successive interval data, all starting from the
age at planting, were used.

Table 3 gives the parameters estimates, standard er-
rors, the values of the selection criteria for Models (1)
and (2). Table 4 gives a summary of the results Models
(3) to (5), all of which use the number of surviving trees
as covariate.

The results clearly indicate that the models which use
the number of surviving trees as covariate, i.e. Mod-
els (3)-(5), lead to much better fits than do those that
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Figure 4: Graph of the cumulative Weibull distribution
functions for different initial stem numbers at planting.

do not, namely Models (1) and (2). All three model
selection criteria, given in Tables 3 and 5, are substan-
tially lower for the models in the first group. Within
the group (3)-(5), Model (3) is judged worst by all three
criteria. The RSE of Model (4) and (5) are very similar
and Model(5) has the lowest AIC and BIC values. Since
Model (5) is also the simplest of the three it is the model
used in the following section.

Table 5: Values of the model selection criteria for Models
(3) - (5).

Model RSE AIC BIC
(3) 0.180 -12.29 -3.50
(4) 0.164 -17.47 -7.21
(5) 0.165 -17.91 -9.12

3.3 Unconditional distribution log(Gi) The un-
conditional distribution of log(Gi) is the weighted sum
over all possible values for Ni of the conditioned distri-
butions of log(Gi|Ni = n). Figure 5 displays the esti-
mated unconditional distributions for Plots 1,3,4,5 for
four different ages, namely 10, 20, 24.33 and 30 years.
The horizontal lines depict the observed values, log(Gi),
which we have been modelled as realizations from their
respective distribution, all fall well ‘inside’ their distribu-
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Table 3: Results for Models (1) and (2): the estimated parameter values and goodness-of-fit statistics.

Model (1), Schumacher (1939) Model (2), Rodŕıguez-Soalleiro (1995)

α̂1 = 3.0979 (Std. Error 0.2417)∗∗∗ α̂0 = −0.7470 (Std. Error 0.7020)
α̂1 = 1.1993 (Std. Error 0.5525)∗

α̂2 = −1.3565 (Std. Error 0.6001)∗

RSE = 0.6727 RSE = 1.076
AIC = 68.42 BIC = 71.35 AIC = 82.41 BIC = 88.28

Stat. significant:∗∗∗ at 0,1% level, ∗∗ at 1% level, ∗ at 5% level, · at 10% level

Table 4: Estimated parameters model (3), model (4) and model (5).

Model α0 α1 α2 α3 α4 α5

0.7958 0.4912∗∗∗ 0.1255∗∗∗ -0.0288 0.0006∗∗∗

(3) (0.5576) (0.0735) (0.0.0061) (0.0208) (0.0001)

0.3697 0.6267∗∗∗ 0.2911∗∗∗ -0.0207 0.0006∗∗∗ 0.2055∗

(4) (0.5346) (0.0854) (0.0650) (0.0192) (0.0001) (0.0804)

3.1597∗∗∗ 0.3823∗∗∗ 2.0161∗∗∗ -0.0928∗∗∗ 0.0015∗∗

(5) (0.6069) (0.0667) (0.1689) (0.0237) (0.0004)

Values of standard errors given in parenthesis.
Stat. significant: ∗∗∗ at 0,1% level, ∗∗ at 1% level, ∗ at 5% level, · at 10% level

tion for the respective age; none of the realizations fall in
an extreme tail. Note that there are no horizontal lines
for the case Ai = 30. That is because no observation
was made at that age. This illustrates the point that,
despite the fact that the number of trees that were alive
30 years after planting is unknown, it is possible never-
theless to estimate the distribution of the log basal area
for stands of that age using Model (5). Table 6 presents
the expected values and the standard deviations of the
fitted unconditional distributions for the ages covered in
Figure 5.

We remark on some features of the estimated prop-
erties of the unconditional distributions, some of which
are given in Table 6.

• The variance remains nearly constant with increas-
ing age. It seems to be independent of the planting
density.

• As might be expected, each different planting den-
sity leads to a different unconditional distribution
for basal area and the differences are substantial
in the first few years. Somewhat surprising is that
these differences seem to persist. Our estimates in-
dicate that, if convergence to a single distribution
occurs, then it takes longer than 40 years before the
effects of planting density become small.

• The estimated mean log basal area for Plots 1 and 3,
which have the higher planting densities, increases

over the first 20 years and then remains approx-
imately constant, whereas it increased monotoni-
cally in Plots 4 and 5. Presumably this is conse-
quence of higher tree mortality, combined with a
reduced diameter growth rate in Plots 1 and 3.

4 Discussion

The objective of this study was to analyse the density-
dependent tree mortality and stand basal area growth in
four unthinned plots planted at different densities on a
homogeneous site. The complete dataset is presented,
thus allowing researchers to invent and to test alterna-
tive approaches for modeling these data. These data
clearly show that planting density has an enormous ef-
fect on the lifetime distribution of trees. The survival
rate of trees in the high-density plots was much lower
than in plots with lower density. That being the case
it seems necessary to take mortality into account when
modeling basal area as a function of planting density.
The particular methods used in this study are specific
to unthinned plots (Clutter and Jones, 1980; Cieszewski
et al., 2000). This study has shown that estimation of
the distribution of the log basal area can be considerably
improved by including the number of surviving trees as
covariate in the model. We have shown how one can cir-
cumvent the difficulty that the value of this covariate is
not known in advance; one simply regards the unknown
number as a random variable whose distribution can be
estimated. The approach can then also be used to esti-
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Table 6: Expected values and standard deviation (in brackets) of the estimated unconditional distribution of
log(Stand Basal Area) for four different ages and four different planting densities. Note that no data were available
for age Ai = 30.

Plot 1 Plot 3 Plot4 Plot5
Ai = 10 4.28(0.15) 4.14(0.15) 3.90(0.15) 3.75(0.15)
Ai = 20 4.44(0.16) 4.37(0.15) 4.17(0.15) 4.03(0.15)
Ai = 24.33 4.42(0.16) 4.36(0.15) 4.19(0.15) 4.06(0.15)
Ai = 30 4.42(0.16) 4.36(0.16) 4.22(0.16) 4.10(0.16)
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Figure 5: Unconditional distributions Black: Plot 1, red:
Plot 3, green: Plot 4, blue: Plot 5 Vertical line: observed
values at Ai.

mate the unconditional distribution of the log basal area
for any planting density within a specified range.

The Langsaeter hypothesis (Langsaeter, 1944) states
that the total volume production in a stand of a given
age, composition and site is, for all practical purposes,
constant for a wide range of density of stocking. The
results of this study do not support this hypothesis (see
Gilmore et al., 2005 and Zeide, 2004). The distribu-
tion of the future basal area in an unthinned Eucalyptus

grandis forest on the Zululand coastal plain is not inde-
pendent of the planting density, within the (rather wide)
range of the experimental densities investigated in this
study. The results presented here provide clear evidence
that planting density has strong and long-lasting effects
on basal area. Our estimates indicate that these effects
persist for at least 40 years and that, even after length
of time, the rate of convergence is very slow.
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Álvarez González. 2007. A growth model for Pinus
radiata D. Don stands in north-western Spain. Annals
of Forest Science 64: 453–465.

Cieszewski C.J. and M. Harrison and S.W. Martin. 2000.
Practical methods for estimating non-biased parame-
ters in self-referencing growth and yield models. Uni-
versity of Georgia. PMRC Tech. Rep. 2000-7. 10 p.

Clutter J.L. and E.P. Jones E.P. 1980. Prediction of
growth after thinning in oldfield slash pine planta-
tions. USDA For. Serv. Pap. 217. 14 p.

Cox, D.R. and D. Oakes. 1984. Analysis of Survival
Data. Chapman & Hall. London.

Craib, I.J. 1939. Thinning, Pruning and management
studies on the main exotic conifers grown in South
Africa. Dept. of Agric. and For. Bull. 196. Govt.
Printer. Pretoria. 179 p.

Decourt, N. 1974. Remarque sur une rela-
tion dendrométrique inattendue-conséquences
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