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CALCULATION OF UPPER CONFIDENCE BOUNDS ON

PROPORTION OF AREA CONTAINING NOT-SAMPLED

VEGETATION TYPES: AN APPLICATION TO MAP UNIT
DEFINITION FOR EXISTING VEGETATION MAPS
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Abstract. This paper explores the information forest inventory data can produce regarding forest types
that were not sampled and develops the equations necessary to define the upper confidence bounds on
not-sampled forest types. The problem is reduced to a Bernoulli variable. This simplification allows
the upper confidence bounds to be calculated based on Cochran (1977). Examples are provided that
demonstrate how the resultant equations are relevant to creating mid-level vegetation maps by assisting in
the development of statistically defensible map units.
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1 Introduction

Mid-level vegetation maps are important information
sources for forest planning, habitat management, and
many other resource management activities (Brohman
and Bryant 2005). One of the first and most impor-
tant steps in creating any map is defining the classes, or
map units, which will be mapped. Typically, mid-level
vegetation maps have map unit descriptions for vegeta-
tion type class and other vegetation structural variable
classes, such as tree size and canopy closure. Therefore,
the pixels or polygons in a mid-level map have one and
only one map unit label. These labels are synoptic for
the each mapped spatial unit (pixel or polygon) and are
summarized at the plot level for the purposes of creating
a vegetation map.

The Forest Inventory and Analysis program (FIA) of
the U.S. Forest Service conducts the national forest in-
ventory of the United States of America (USA). In the
U. S. Forest Service, several of the Regions have adopted
similar map unit design processes that integrate region-
ally defined dominance type definitions with FIA data.
FIA data is a sample of forest characteristics, having ap-
proximately one sample per 2428 ha of forest land, which
have traditionally been used to describe forest composi-
tion in tabular reports (Thompson et al., 2005).

Very generally, the first step of the mapping process

passes the plot data through a dichotomous decision tree
and summarizes it at the plot level with respect to veg-
etation type. These plot level summaries are used to
estimate dominance type composition over an area of in-
terest using a Regional Dominance Type Classification
(RDTC). Readers familiar with the FIA mapped plot
configuration (Bechtold and Patterson, 2005) should
note that multiple condition plots would receive a single
label using this approach.

The second step of the mapping process aggregates
the RDTC classes into map units. This is generally done
by setting a minimum abundance criterion for any map
unit (e.g., a map unit must comprise at least 3% of the
mapped area) and hierarchically aggregating (i.e., create
ecologically rational groups) the RDTC classes into map
units, so that the map units meet the specified minimum
abundance criterion. Some Forest Service Regions take
the process a step further by considering the statistical
separability of the map units in the context of imagery
and other geospatial data being used as predictors.

Many examples of the mid-level vegetation mapping
programs exist within the Forest Service. For exam-
ple, Gillham et al. (2007) describe how field data, re-
mote sensing imagery, and ancillary geospatial layers
were integrated using rule-based predictive models to
create a mid-level map for the Bridger-Teton National
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Forest. Since this map’s production, it has been use-
ful for addressing resource and land management issues,
such as a fuels reduction project in the Buffalo Valley
(Buffalo Ranger District, 2009). Recently, FIA state re-
ports, such as Thompson et al. (2005), have included
maps that are built in a similar manner.

Regardless of the mapping project, because FIA data
is observed for elements of a sample, minor components
of the landscape (in terms of abundance, not necessar-
ily management or ecological importance) may not be
represented in the FIA sample. A good example of this
is riparian areas, which are ecologically important, but
generally cover a very small percentage of the landscape.
The standard approach to understanding these resources
is to pre-stratify the area and intensify the sample within
a stratum. This is an expensive means to understand
more about a landscape component that you know noth-
ing about its abundance.

This paper asks a non-traditional question of the FIA
sample (or any other spatially balanced sample), which
has not been addressed in the literature within the con-
text of vegetation mapping. Specifically, this paper ex-
plores what information FIA data can produce regarding
dominance types or map units that were not sampled.
The paper shows how sample data can be used to define
the upper confidence bounds on not-sampled dominance
types. This allows the analyst to state their confidence
(1 − α) 100% that the proportion of a not-sampled dom-
inance type is less than some proportion η of the region
of interest R. By doing this, an upper confidence bound
is determined for proportion of R in not-sampled domi-
nance types.

Statistical Derivation
We will assume the dominance type classification is

based on data gathered on a plot and that the plots are
uniformly shaped. We are not assuming the plot config-
uration is the national FIA plot configuration (Bechtold
and Patterson, 2005), only that the plot configuration
is uniform for all plots. Our proposed method for con-
structing the upper confidence bound is in the context
of the finite sampling paradigm. Our population unit
will be a co-located square that contains the plot. The
square is only used in the construction of the statistical
model; the size of the square is based on two constraints;
first it is big enough to contain the plot and second the
square is small enough so that it can classified based on
the data gathered on the plot. For example, the FIA
plot characterizes and is contained in a co-located 90-
m x 90-m square, but the FIA plot in most landscapes
will not characterize a co-located square that is a half
a kilometer on a side. Let Rsq denote the square. If
the region R is large enough, it is reasonable to assume
we can tessellate the region R with the square Rsq. We
further assume that the sample can be viewed as a sim-

ple random sample of the tessellation. The FIA sample
can be treated as a simple random sample (Bechtold and
Patterson, 2005, page 25). The population characteris-
tic of interest is whether each square in the tessellation
is classified as being of the rare dominance types. This
is a Bernoulli variable; 0 when Rsq is not one of the
rare dominance types and 1 when Rsq is one of the rare
dominance types.

An upper confidence bound for the presence of a rare
event has been addressed in other fields. For complete-
ness, we outline one construction of an upper confidence
bound using the model characteristics developed above
(for details see Cochran, 1977, sections 3.4, 3.5, and 3.6).

An estimate of the proportion of region (R) that is
classified as being in one of the rare dominance types is
given by p = b

n
, where n is the number of plots in the

sample and b is the number of plots in the sample that
are classified as one of the rare dominance types. If we
assume the population size N is much larger than the
sample size n, then we can use the binomial approxima-
tion for the frequency distribution of p. The population
size N is equal to A/Asq , where A and Asq are the area
of R and Rsq respectively. An upper (1 − α) 100% confi-
dence bound for the proportion of R that is classified as
being in one of the rare dominance types is the largest
p such that

b∑

i=0

n !
i ! (n − i) !

pi (1 − p)n−i ≥ α (1)

If b is greater than zero, then one solves (1) for p using
numerical techniques; the case b > 0 is not of interest in
this paper. If no sample plots are classified as being one
of the rare dominance types, then b is equal to zero and
(1) has a simple form with the following solution:

p0(1 − p)n ≥ α ⇔ p ≤ 1 − α1/n (2)

If no FIA plots are classified as being in the rare types,
then we are (1 − α) 100% confident that the proportion
of land in R that is classified as being in one of the rare
types is less than 1 − α1/n.

A word of caution about the sample size should be
noted when using this method. To illustrate using an
example, suppose the region of interest (R) is the state
of Utah in the interior west of the USA, and the rare
types are types that occur within forested lands. Us-
ing the number of plots in the state of Utah for n gives
an upper confidence bound for the proportion of the rare
type that occur in the state of Utah, where what may be
of interest is an upper confidence bound for the propor-
tion of rare types that occur in forested lands in Utah;
so it may be more appropriate to restrict to the subpop-
ulation of forested lands in Utah. It is alright to do so
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(Cochran, section 3.10), but we need the size of subpop-
ulation N ′ (in this example forested lands) to be much
larger than n′, the number of plots in the subpopulation.
The subpopulation is defined by the map units, so the
plots in the subpopulation are the subset of plots that
lie in the forested map units. We need to use n′ instead
of n in (2); the (1 − α) 100% upper confidence bound
for proportion of rare categories in the sub-population
is then 1 − α1/n′

.

2 Application Example

In this example, assume we are mapping a fictional
400,000 ha National Forest and assume the National For-
est has 200 FIA plots, of which 100 plots are in forested
land. When the regional dominance type definitions are
applied to the FIA data, we estimate the proportion of
each sampled dominance type on the forest lands (note
that the non-forest dominance types would not be rel-
evant using FIA data). Based on the number of plots
on forested lands we estimate there are 200,000 forested
ha, so N ′ is much larger than n′ = 100. Using (2) with
n′ = 100, Table 1 is generated relating to the forest types
that were not sampled.

Table 1: Upper estimate of rare types as a function of
desired statistical confidence for sample size n′ = 100.

Confidence Upper Confidence Bound for
Percentage of Rare Types

(1 − α) 100% (1 − α1/n′
)100%

98 % 3.8%
96% 3.2%
95% 3.0%
94% 2.8%
92% 2.5%
90% 2.3%

Using Table 1, we can state that we are 95% confident
that the FIA sample did not miss a dominance type
that comprised more than 3.0 % of the forested area.
Actually, we can make a slightly stronger statement that
we are 95% confident that all non-sampled dominance
types combined comprise less than 3.0% of the forested
area.

Conversely, we could use the same formulas to deter-
mine the number of plots (at the (1 − α) 100% confi-
dence level) required to not miss a dominance type that
is at least p100 % of the forest area. Solving the (2) for
n′ we get

n′ =
ln (α)

ln (1 − p)
(3)

For example, if the requirement is to be 95% confident

that a dominance type that comprises 1% (or greater)
of the forest area was not missed, then n′ is 298. For the
fictitious National Forest discussed above, this means
that the standard FIA sample would have to be inten-
sified to include an additional 198 plots in the forested
area. Figure 1 illustrates sample size as a function of
the minimum percentage of the dominance type of that
is not be missed at a confidence level 95%. Note the
rapid increase in sample size as the percentage of the
region covered by the rare type decreases from 3.0%.

Figure 1: Sample size requirements as a function of per-
centage of region covered by the rare type.

3 Conclusions

The idea that vegetation classification systems, exist-
ing vegetation maps, and inventory data need to be well
integrated has long been recognized. Within the map-
ping community, FIA and locally intensified inventory
data have played a critical role in map unit design. Until
now, however, mappers could say little about the vegeta-
tion components that were not in the sample. This paper
provides insight into how statistically sound and quan-
titative statements can be made regarding the minor
and unsampled landscape components. Analysts may
now state their confidence that the proportion of a not-
sampled dominance type is less than some proportion of
the region of interest, which places an upper confidence
bound on the proportion of not-sampled map units.
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