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Abstract. This study of tree morphology is presented in three parts: Part 1 deals with the profile (or
envelope) of trees and woody plants. Noting that most trees exhibit: (i) azimuthal symmetry about the
central axis (often the main stem or bole) in both in foliage and scaffolding; and (ii) decrease in leaf density
from branch-end toward the central axis, a mathematical model is developed using the calculus of variations
that predicts the profile, with but one free parameter. The analysis predicts profiles range from the nearly
spherical in the case of uniform distribution of leaves throughout the crown, to essentially conical when the
leaves are found largely on the branch-ends. The results are presented in figures showing theoretical profiles
overlaid on photographs of representative trees.

Part 2 is based on field measurements that show that the cross-sectional area of a branch (or stem) entering
a fork (in the direction of water transport) is less than the sum of the cross-sectional areas of the branches
leaving that fork. Mathematical analysis using the calculus of variations shows that this “bulking up”
actually reduces the quantity of plant tissue incorporated in the branching. Furthermore, it is shown that
the angle of branching increases with bulking up. Field measurements are in rough agreement with this
prediction.

Part 3 brings together the concepts of the first two parts to predict the cross-sectional area of the bole
as a function of longitudinal position. Using equations appropriate to a tree with a single main stem and
horizontal side branches, the cross-sectional area of the bole is calculated. The results compare favorably
with field measurements.
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General Background

The primary objective of this report is to show how
certain morphological characteristics of trees and other
woody plants can be understood as strategies to mini-
mize plant tissue. In particular the study addresses two
general features: (1) the outline (envelope) or profile of
trees, and (2) the branching angles exhibited at forks.
The calculus of variations is used to address these prob-
lems. Field measurements were used to both motivate
the study and to follow up on predictions of the theory.
The study is concerned with “universal” properties of
woody plants that transcend the peculiarities of species.

The paper is divided into three Parts: Part 1 deals
with the profile of a tree. Based on the azimuthal sym-
metry of trees about a vertical axis and the requirements
of photosynthesis, it is found that the distribution of
leaves (photosynthetic units) is sufficient to determine
the profile, from rounded to conical, with just one diag-

nostic parameter.
The Part 2 builds on the result (unexpected to this

author) that the sum of the cross-sectional area of the
branches leaving a fork is generally greater than the
cross-sectional area of the branch feeding into the junc-
ture. This result holds across all species measured. The
analysis shows that this “bulking-up” provides for the
most efficient branching.

Part 3 combines predictions of Parts 1 and 2 to provide
a further check on the preceding results. Here, the cross-
sectional area of the bole (for a tree with a single main
stem) is determined as a function of vertical position No
new concepts are introduced.

A search of the literature provided precious little for
direct reference, but a wealth of background material.
Beyond the specific works cited below, many prominent
lines of research have addressed the problems of tree
morphology and function. As a prime example, the pipe
model theory, first proposed by Shinozaki et al. (1964),
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hypothesized that a tree can be conceived as a bundle
of pipes of fixed cross-section, some living some senes-
cent; each living pipe connects a unit of foliage to the
root system; each senescent pipe is retained as heart-
wood. Many elaborations and extensions followed. For
example: Waring et al. (1982) used pipe theory to pre-
dict canopy leaf area. Valentine (1985) used it to study
tree growth. Rennolls (1994) used it to investigate stem-
profile. Makela (2002) used it to further study stem ta-
per considering carbon balance. Valentine and Makela
(2005) combined pipe theory with models for crown
height, stem area, and carbon balance to better model
tree growth and form.

Considering specific species and stands: Valen-
tine et al. (1994) applied the pipe model to stands of
Sitka spruce or loblolly pine; Makinen et al. (2003) and
Berninger et al (2005) applied it to scots pine; Kan-
tola et al. (2007) extended pipe model concept to a
broader based model which they used to study Norway
spruce.

West et al. (1997) proposed a comprehensive model
(the WBE model) of plant structure based on a volume-
filling fractal branching network, mechanical consider-
ations, pipe model concepts, and 3/4 power allomet-
ric scaling law. Makela and Valentine (2006) showed
how crown ratio influences scaling. More recently, Sav-
age et al. (2010) upgraded the WBE model by consid-
ering trade-offs between hydraulic safety and efficiecy
while incorporating more comprehensive empirical data.

Robin J. Tausch (2009) also proposed an analytical
model for estimating biomass of tree crowns by consid-
ering the structural consequences of their physical and
physiological requirements.

Statistical studies are also prominent in the literature:
the work of Wang and Rennolls (2007) on the use of a
bivariate distribution to model tree diameter and height
illustrates this approach.

Part 1:

Profile

1.1 Introduction

The possibility of predicting the shape of a tree, the
profile of its crown, from the distribution of its foliage
was suggested to me by two general observations: (i)
Most trees (at least in temperate latitudes) exhibit az-
imuthal symmetry, both in scaffolding and foliage, and
(ii) the density of foliage is maximum near the stem or

branch ends, decreasing inward toward the central axis.
Azimuthal symmetry, in the first place, implies that

ambient, diffuse light alone is sufficient for the photo-
synthetic needs of the tree. (Indeed, photosynthesis sat-
urates at 10 percent or less of direct sunlight (Emerson
1929, Hall and Rao 1999). The minor differences noted
in the structure and function of leaves, north to south
and top to bottom, might just as well be adaptations to
protect the leaves from the direct rays, as adaptations
to better utilize those rays.

In the second place, the decrease in leaf density is con-
current with the decrease in light intensity toward the
interior region. (A simple study by the author using a
photographic light-meter, was consistent with this qual-
itative expectation.) The explanation of how and why
the distribution of foliage can exhibit azimuthal symme-
try in spite of the asymmetric distribution of external
light intensity is problematic to me; it is as if only am-
bient light matters.

For a given a distribution of foliage, I assume that the
profile of a tree be that which maximizes the number
of leaves on a tree of a given size. (Here, the term leaf
is used as a proxy for a photosynthetic unit.) The four
basic ingredients that control the growth of a tree are
light, water, carbon dioxide, and nutrients. I assume
that light alone is sufficient to determines profile. The
corrupting effects of environmental factors, both exter-
nal and internal, are neglected. The following theory
thus applies to lone trees and woody plants privileged
with optimum growing conditions.

The predictions of the model are in rough agreement
with field observations. That is, trees with rounded pro-
files (like many deciduous species) tend to have foliage
uniformly distributed throughout their crowns, while
trees with conical profile (like many conifers) tend to
have foliage concentrated near their stem ends. Figures
1.3a-d discussed below illustrate this agreement. I was
unable to find any data on the radial density of foliage,
so I relied on my own general observations.

Radar techniques such as were used by Tiangco and
Forester (2000) to measure trunk-canopy biomass could,
I believe, be adapted to radial density measurements.
The use of stereo photos of tree crowns (Mitchell 1975b)
might provide a better means of determining profiles.

Four prominent works have been of important to me
in setting the stage for the present work:

Emerson (1929) provided some of the earliest mea-
surements on photosynthesis as a function of light in-
tensity. His work addressed chlorophyll concentration,
wavelength of light (color), and rates of photosynthesis.

Horn (1971) was concerned with the succession of tree
species from open field to climax forest conditions. Con-
centrating on available light, he modeled a tree as a mul-
tiply layered structure, each layer containing leaves ran-
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domly distributed. By both calculating and measuring
filtration of direct sunlight under various conditions, he
was able to make predictions on crown shape ranging
from conical, to ellipsoidal, to cylindrical (which he rec-
ognized as unlikely). He did not consider reflection thus
ignored the possibility of diffuse light.

Hall and Rao (1999) provide a valuable compendium
of photosynthesis from a history of our understanding
the process to its biology and chemistry.

The more recent text by Thomas (2000) provides a
comprehensive review of the natural history of trees from
their geologic past, their form and function, to their care
and nurturing. This resource was of particular value
to me in understanding the physiology and anatomy of
trees.

The text by Bell (1991) on Plant Form provides a
highly detailed analysis and classification of plant forms.
The section on “Plant branch construction” was of par-
ticular interest to me.

Mitchell (1975a) proposed a crown model with pro-
file given by a logarithmic increase of branch size with
distance from tree top, and foliage density constant to
within a certain distance from branch ends. This model
shares some features with the model presented herein,
but the profile here is deduced from more fundamental
considerations.

1.2 Theory

Consider a cylindrical coordinate system (r, z, θ) with
its origin at the top of the tree and the z-axis directed
down the main stem (or symmetry axis), r is directed
radially outward, and θ is the azimuthal variable. The
function R(z) is the average radial distance from the
symmetry axis to the stem-end; r = R(z) defines the
profile of the tree.

Let n(r, z) define the density of leaves, i.e. the average
number of leaves per unit volume representative of the
tree. The total number of leaves N , assuming radial
symmetry, is given by

N = 2π

∫ z

0

∫ R[z]

0

n [r, z] r dr dz, (1.1)

where Z is the distance down to the leaf-line, that is,
to the approximate point where the foliage ends. The
area A of the surface bounding the tree, as defined by
the profile R = R[z], can be written

A = 2π

∫ Z

0

(
R′2 + 1

) 1
2 Rdz, (1.2)

where R′ = dR
dz . The area A is taken as the (constant)

measure of size.
The procedure followed below utilizes the calculus of

variations to find the the function R[z] which maximizes

N for a given A. But first, it is necessary to introduce
a density function n[r, z] which satisfies the general re-
quirements:

1. n[r, z] is defined on the domain 0 < z < Z, and
0 < r ≤ R[z]

2. n[r, z] ≤ n[R[z], z]

A physically reasonable function which satisfies these
requirements is given by

n [r, z] = n1 exp [−b (R [z] − r)] , (1.3)

where n1 = constant. Equation (1.3) describes an ex-
ponential drop-off in leaf density from its maximum at
R = R[z]. (This density function can be derived by
assuming that, first, the tree is immersed in a uniform
ambient light bath; and, second, that light intensity is
reduced in proportion to the density of leaves intercepted
(as in the Beer-Lambert law); and third, that the den-
sity of leaves at any point is proportional to the intensity
of light at any point.) Two other density functions, one
providing a linear fall-off and the other an error func-
tion fall-off were tried; both led, qualitatively, to the
same results.

Equation (1.1) for N can now be readily integrated
over r, thus:

N =
2πn1

b2

∫ Z

0

(exp [−bR] − 1 + bR) dz. (1.4)

The specific function R = R[z] which yields maxi-
mum leaf number N subject to the condition that A
is constant is determined by the Euler-Lagrange (EL)
differential equation:

d

dz

(
L − R′ ∂L

∂R′

)
=

∂L

∂z
, (1.5)

where R′ = dR
dz . The Lagrangian L, in turn, is given by

the integrand of (1.4) added to (or subtracted from) λ,
an undetermined multiplier times the integrand of the
area constraint A of (1.2),

L = exp [−bR] − 1 + bR − λR
√

R′2 + 1; (1.6)

the constants multiplying the integrals (1.2) and (1.4)
are subsumed in λ. Substitution of (1.6) into EL yields
the differential equation

dR

dz
=

((
λR

exp [−bR] − 1 + bR

)2

− 1

)1
2

. (1.7)
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The profiles displayed in Figures 1.3a-d were all ob-
tained by a second order numerical integration of (1.7).

Two special cases of (1.7) are easily solved analyti-
cally: The first case, bR � 1, is satisfied by small r
and/or small b; here, the exponential can then be ap-
proximated by exp[−bR] ≈ 1 − bR + (bR)2

2 . Equation
(1.7) reduces to

dR

dZ

((
2λ
b2

R2
− 1

)) 1
2

, (1.8)

which can be readily integrated to read,

R2 +
(

2λ

b2
− z

)2

=
(

2λ

b2

)2

, (1.9)

where R = 0 at z = 0. Equation (1.9) can be recog-
nized as the formula for a circle of radius 2λ

b2 with center
on the z-axis at z = 2λ

b2 . For the condition bR � 1 to
hold for all R, b itself must be very small; from (1.3),
this implies that the exponential must be very slowly de-
creasing. Thus, a uniform distribution of foliage implies
a spherical crown.

If bR � 1, then the exponential term exp[−bR] in
(1.7) as well as the number 1, becomes negligible com-
pared with bR. Thus, (1.7) reduces to

dR

dz
=
((

λ

b

2)
− 1
) 1

2

, (1.10)

whose integral, with R = 0 at z = 0, can be written

R = z

√(
λ

b

)2

− 1, (1.11)

which represents straight lines passing through the ori-

gin with slopes
√(

λ
b

)2 − 1. A very large value of b im-
plies a very large rate of fall-off of density from stem
ends. Thus, foliage is concentrated near the stem-tips
when the profile is conical.

Before comparing the theoretical results obtained
from (1.7) with the profiles of actual trees, it is conve-
nient to introduce the dimensionless variables: R = bR,
z = bz, and c = λ

b . In terms of these variables, (1.7)
can be written, after factoring the expression under the
radical,

dR

dz
=

[(
cR

exp [−R] − 1 + R
− 1
)
×

×
(

cR

exp [−R] − 1 + R

)
+ 1
]1

2

(1.12)

The reduced variables R, z, and c will be used in all
that follows; note that c is the only free parameter. The

bounded solutions are now characterized by c < 1, and
the unbounded by c > 1. Note also, that for real-valued
solutions,

cR ≥ exp [−R] − 1 + R, (1.13)

where, from (1.12), the equality holds for stationary
points, dR

dz
= 0. Figure 1.1 provides a graph of (1.12)

for various values of the parameter c. Note that, for c ¿
1,

lim
R→∞

(
dR

dz

)
=
√

c2 − 1 ≡ tan α. (1.14)

Figure 1.1: Graphs of dR
dz

versus R for various values of
c from equation (1.12). For cases where c < 1, dR

dz = 0
gives the radius RM of maximum girth. For c > 1, the
horizontal asymptote of dR

dz
equals the tangent of the

half-angle α of the enveloping cone, as in (1.14).

Numerical integration of (1.12), evaluated at the limit
dR
dz =0, enables one to calculate the RM

zM
versus c at max-

imum girth. The results are shown in Figure 1.2.
In general, the solutions to (1.12) bear a striking re-

semblance to the conic sections. For values c < 1, the
solutions are approximately elliptical, depicting crowns
that are “pseudo-ellipsoidal”. The solutions are slightly
broader near the vertices than their conic counterparts.
For values c > 1 , the solutions are hyperbolic depicting
crowns that are “pseudo-hyperboloids “ (one sheet of
the two-sheet variety). The asymptotes define the coni-
cal appearance in this case. For c = 1, the “parabolic”
case, the crown appears cylindrical with a rounded top.
(Unlike the parabola, the derivative dR

dz = 0 for large z.)

1.3 Experimental Results

Digital images of a number of trees and woody shrubs
were acquired using a Panasonic Lumix (DMC FZ35)
camera in telephoto mode. Each image was cropped,
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Figure 1.2: Graph of RM

zM
versus c for the elliptic case,

c < 1. From (1.12) , values of RM

zM
where computed for

c = 0.0, 0.2, . . . , 1.0. A smooth curve was drawn through
these points.

if necessary, and down-loaded into a True BASIC pro-
gram designed to superimpose a computed profile over
the tree. Examples of four such ”best fits” are shown
in Figures 1.3 (posted at the end of Part 1). In my re-
search, 33 trees and woody shrubs were thus studied.
The trees chosen for inclusion in this report are not ex-
ceptional; they were selected mainly to exemplify the
various of tree shapes. Of course, only uncrowded, un-
damaged, mature trees were included in the study. To
minimize parallax, unobstructed views were required so
as to obtain telephoto images.

The trees included in this report include two Honey-
locust Robinia pseudoacacia, Spruce Picea engelmannii,
and Juniper Juniperus scopulorum. Superimposed on
each image is the “best fit” theoretical profile matched
by adjusting the constant c and the position of the
leaf-line zN . The “best fit” profiles were determined
by “eye”. (A numerical scheme such as “least-squares”
could have been used, but in this author’s opinion, such
analysis is not warranted in this preliminary study with
limited data.) Also shown on those figure for which
c < 1, is the coordinates of maximum girth, zM . The
best-fit values of this analysis are given in Tab 1.1 to
two significant figures of accuracy.

The leaf-line constant zN was introduced originally
to limit the range of numerical integration. However,
this constant is somewhat diagnostic of tree shape for
conifers. For the set of spruce trees studied, c ≈ 0.9,
and moreover RN

zN
≈ 0.3. No analogous relationship was

observed among deciduous trees; contrarily, note the dif-
ference in c values between the two honey-locust trees
in Table 1. For trees with c > 1, the parameter zN is
particularly relevant to tree shape: the greater zN , the

“sharper” the tree top.
The parameter b associated with the decrease in leaf

density with distance in from branch-end can be eval-
uated using the scaling relations R = bR and z = bz
introduced just above equation (1.12). The coordinate
of maximum girth, Rm, is particularly convenient (when
e < 1) because it can be computed directly from (1.13)
at equality.

The computed values b are generally higher than ex-
pected: 1

b
implies a “compensation point” where leaf

density is decreased by 1
e
≈ 0.368 of its maximum value

at branch-end. By measurement, in several cases, the
actual distance 1

b is greater than that calculated and
shown in Tab. 1.1.

1.4 Discussion and Summary

The approximate azimuthal symmetry common to
most trees in this temperate latitude (Colorado) sug-
gested to this author that growth and form progress as
if ambient light alone is sufficient.. Building on this
concept, and using the density of foliage as a proxy for
the distribution of photosynthetic units, a theory was
developed which determines the profile of a tree (crown)
from optimization of the light gathering potential, i.e.
the number of leaves available.

The theory predicts, reasonably well, the profile of
trees: generally, trees with uniform distribution of fo-
liage exhibit rounded crowns (such as with many de-
ciduous tree); trees with their foliage concentrated near
the outer stem-ends exhibit conical crowns (such as with
many conifers). Mathematically, the calculus of varia-
tions was used to find the profile (i.e. the radial branch
length as a function of position along the main stem
symmetry axis) which gave the maximum number of
leaves (the integral of the leaf density) for a given size of
tree (as measured by a fixed bounding surface area). A
density-of-foliage function was introduced that held the
stem-end leaf density constant, and allowed a fall-off of
density inward toward the main stem or symmetry axis.
An exponential density function was chosen which met
these requirements.

The theory also predicts that the single parameter,
c (> 0) is sufficient to define the profile. Trees with
c < 1 have rounded profiles (c = 0 are circular); with
c > 1, conical. The profiles are qualitatively similar to
the conic sections: Indeed, the terms elliptic, and hy-
perbolic serve as appropriate bynames for the respective
profiles, overlooking the sometimes significant quantita-
tive differences.

The theory was compared with actual trees by super-
imposing the computed profiles over the digital images
of actual trees. Beyond adjusting for scale by setting zN

at “leaf-line”, only the parameter c was varied to make
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Figure 1.3: Photographs of trees with computed profiles superimposed. Upper left. Honey-locust Robinia pseudoa-
cacia (c = 0.6). Upper right. Honey-locust Robinia pseudoacacia (c = 0.1). Lower left. Spruce Picea engelmannii
(c = 0.9). Lower right. Juniper Juniperus scopulorum, (c = 1.1)
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Tree c ± Δc zN RN zM RM (1/b)[cm]
Honey-locust 0.6±0.1 6.0 2.1 3.7 2.9 200
Honey-locust 0.1±0.1 0.3 0.2 0.2 0.2 3700
Spruce 0.90±0.05 35 9.9 31 10 2
Juniper 1.1±0.1 70.0 196.0 NA NA 0

Table 1.1: “Best fit” values of c and the associated values, zN , RN , zM , RM , and b. The uncertainty values ±Δc
indicate the range over which c can be adjusted with less than 10% change in the values of the other parameters.

a good visual fit. I also found that, for trees for which
c < 1, the ratio RM

zN
, where zM is the longitudinal po-

sition of maximum girth, is rather constant for a given
species; this relationship was not investigate further in
this study. In a similar manner, for conical trees, the
setting of zN adjusted for the roundedness of the tree
apex, high settings of zN gave pointed apices.

The agreement between the distribution of leaves and
the availability of light (which was the concern motivat-
ing this study) was not determined because of my not
having convenient way of measuring both leaf density
and light intensity within the crown. I tried to determine
leaf density by measuring the light passing through the
foliage using a light meter-telescope combination, but
this strategy was not successful.

It is well known that the tree-growth is controlled the
four basic ingredients: light, water, carbon dioxide, and
nutrients. The present study suggests that light alone
is responsible for tree shape (although I admit that the
connection of light to foliage was not well established
in this study). But further evidence of this hypothesis
follows from the observation that a tree with multiple
main stems, or even a small group of trees growing very
close together, produce a collective crown whose profile
is similar to that of a single tree.

Part 2:

Branches

2.1 Introduction

This study is based on one simple but significant ob-
servation: The cross-sectional area of a branch (or stem)
entering a fork (in the direction of water transport) is
less than the sum of the cross-sectional areas of the
branches leaving that fork. To quantify this, I introduce
the “bulking ratio”

γ ≡ Area.of.branch.entering.fork∑
Areas.branches.leaving.fork

(2.1)

All areas are measured outside of the swollen region
(collar) of the fork. I made measurement on 128 forks
on 21 different species of trees and tall shrubs, chosen
opportunistically, in the vicinity of Denver, CO. To my
surprise, the mean bulking ratio was less than one: in-
deed, γav = 0.867 with standard deviation SDγ = 0.105.
The probability of this result if γtrue=0 is clearly in-
finitesimal.

Moreover, and even more surprising to me, was a re-
lationship between γ and the angles between the outgo-
ing branches: The angles between the out-going branches
tended to increase with γ. The primary objective of this
Part is to understand this relationship.

One might expect that the ratio of areas should be one
considering both the continuity of venation across the
fork and the strength required to support the weight-of-
branch beyond the fork. In this latter regard, the cross-
sectional area of a branch (or stem) at a given point is
proportional to the load supported at that point. The
constant of proportionality depends on the strength of
the wood. (Specifically, the strength required depends
on whether the wood at that point is under compression,
tension, torsion, flexure, or some combination there of.)
Strength is measured in units of force per unit area. It is
assumed that the swollen region of the fork is sufficiently
small (in distances along the branches) that the load
supported by the incoming branch is essentially the same
as that supported by the sum of the outgoing branches.

2.2 Theory

To simplify the analysis, considere a simple two-
branched fork confined to a single plane; see Figure 2.1.
The line QO represents the incoming branch; OP and
OP’ the outgoing branches. The lines QO, OP , and
OP ′ lie in a single plane. The ellipses at the ends of the
outgoing branches represent terminal buds. The angle
ω = θω + θω

′ is the only angle measured in the field;
the other angles as well as the lengths r, s, s′, t, and t′

are used in the analysis. A fork in which the branches
OP and OP ′ lie in a different plane from that of QO and
OP requires three independent angles. A three-branched
fork, for comparison, has five independent angles; inclu-
sion of such forks complicates both the analysis and the
field measurements.
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The fork, as introduced, concerns terminal twigs. The
analysis, however, reduces to a consideration of the fork
in the neighborhood of point O, at which only the ar-
eas of the incoming and outgoing branches are involved.
Because it seems reasonable (and not contradicted by
limited observations) that a fork maintains its geometry
from inception to maturity, the analysis is assumed valid
for all simple forks.

My strategy is to assume some reasonable model for
the cross-sectional area of a branch in terms of position
along the branch, then, given the positions of the posi-
tions Q, P , and P ′, find the point O that minimizes the
volume of tissue in that region of fork. The points P ,
P ′, and Q are merely reference points which, it will be
shown, drop out in the final analysis.

As the two branches are usually of different sizes, I
introduce the branching ratio χ.

χ ≡ Area.of.smaller.branch.leaving.fork
Area.of.large.branch.leaving.fork

(2.2)

Figure 2.1: The geometry associated with the analysis of
the fork. Point O locates the intersection of the central
lines of the branches. Point Q is a point on the center-
line of the incoming branch arbitrarily close to point
O. Points P and P ′ on the center-lines of the out-going
branches denote positions of equal branch area; P and
P ′ are arbitrarily close to point O.

The volume V of a branch segment (with no interven-
ing side branches) between points a and b can be written
as the integral of the branch area A[x] in terms of the
distance x is along the branch,

V =
∫ b

a A[x]dx. It is convenient to write the area
as the product A[x] = A0g[x] such that g[0] = 1; it is
reasonable to think of g[x] as a monotonically increasing
function of x. In the case of constant elastic modulus,
g[x] would be exponential: g[x] = exp[bx], where x is
measured inward/downward. Choosing points P and P ′

(terminal branch ends) as the starting points along the
two outgoing segments OP and OP ′, their volumes are,
respectively,

Vs = A0

∫ s

0

g[x]dx = A0G[s], (2.3a)

Vs′ = A0

∫ s′

0

g[x]dx = A0G[s′], (2.3b)

where capital G refers to the integral g. Here, G[x] must
be differentiable, dG

dx
= g[x]. I assume that the area of

the branch at point P is the same as that at P ′!
The volume of the segment QO is given by

Vr = A1

∫ r

0

g[x]dx = A1G[r], (2.3c)

where A1 is the area of the incoming branch measured
at point O. From the definition of the bulking constant
(2.1), one can write

A1 = γ(As + As′) = γA0 (g[s] + g[s′]) . (2.4)

Thus, the expression for the volume Vr can be written

Vr = A1

∫ r

0

g[x]dx = γA0 (g[s] + g[s′])G[r].

The total volume of the fork V = V s+V s′+V r, where
the volume of the swollen part of the fork is neglected.
From equations (2.3a, 2.3b 2.3c),

V = A0G[s] + A0G[s′] + γA0 (g[s] + g[s′])G[r]. (2.5)

The distance s and s′ can be related to r, θ and r, θ′ by
means of the cosine theorem as applied to the triangles
of Figure 1:

s2 = t2 + r2 − 2rt cos θ, (2.6a)

s′2 = t′ + r2 − 2rt cos θ′. (2.6b)

The minimum of V , then, is determined by the con-
ditions ∂V

∂r = 0 and ∂V
∂θ = 0. Thus, from (2.5), and
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recalling that dG
dx = g[x]:

∂V

∂r
=A0

(
g[s]

∂s

∂r
+ g[s′]

∂s′

∂r
+ γ (g[s] + g[s′]) g[r]+

+γ

(
dg

ds
+

∂s

∂r
+

dg′

ds′
∂s′

∂r

)
G[r]

)
, (2.7a)

∂V

∂θ
=A0

(
g[s]

∂s

∂θ
+ g[s′]

∂s′

∂θ
+

+γ

(
dg

ds

∂s

∂θ
+

dg′

ds′
∂s′

∂θ

)
G[r]

)
. (2.7b)

The partial derivatives of s and s′, here, can be calcu-
lated from the cosine theorems (2.6a, 2.6b); again, with
reference to Figure 2.1,

∂s

∂r
=

r − t cos θ

s
= − cos θω ,

∂s

∂θ
=

rt sin θ

s
= r sin θω,

(2.8a)
∂s′

∂r
=

r − t cos θ′

s
= − cos θ′ω ,

∂s′

∂θ
=

rt′ sin θ′

s′
= r sin θ′ω .

(2.8b)

Consider (2.7a, 2.7b) in the limit of very short in-
coming branch, i.e. r → 0; in this limit, g[r] → 1 and
G[r] → 0. Equations (2.7a, 2.7b), with (2.8a, 2.8b), can
be written,

∂V

∂r
=A0 (g[s](− cos θω) + g[s′](− cos θ′ω)+

+ γ(g[s] + g[s′])) , (2.9a)
∂V

∂r
=A0 (g[s] sin θω − g[s′] sin θ′ω) r. (2.9b)

Ignoring the trivial solution r = 0 in (2.9b), setting
g[s]+χg[s′], (following (2.2), and recognizing that A0g[s]
and A0g[s′] are the areas of the outgoing branches near
point O, factoring out the term g[s′], and setting the
derivatives equal to zero , one finds:

γ(χ + 1) − χ cos θω − cos θ′ω = 0, (2.10a)
χ sin θω − sin θ′ω = 0. (2.10b)

Equations (2.10b) can be solved simultaneously for θω ,
and θ′ω . By squaring and converting the sines to cosines,
and performing the required algebra:

cos θω =
1
2χ

(
(1 + χ)γ − (1 − χ)

1
γ

)
, (2.11a)

cos θ′ω =
1
2χ

(
(1 + χ)γ − (1 − χ)

1
γ

)
. (2.11b)

Also, with reference to Figure 2.1,

ω = θω + θ′ω. (2.12)

Equations (2.11a, 2.11b) and (2.12) can be solved nu-
merically to give ω as a function of γ and χ. Figure 2.2
provides graphs of ω versus χ for several appropriate
values of γ. Note the limits:

• For γ = 1 (no area increase across the fork), θ =
θ′ = 0◦, thus ω = 0◦. In this case there would be
no branching at all; every leaf would find itself on
a lone stem originating at the ground.

• For χ = 1 (equal size branches leaving the fork),
equations (2.11a, 2.11b) yield θ = θ′ = cos−1 γ,
thus, from (2.12),

ω = 2 cos−1 γ. (2.13)

This formula (by inspection of Figure 2.2) holds to
fair approximation for branching ratios χ > 0.6.

• There is a minimum branching ratio χmin for any
given bulking ratio γ,

χmin =
1 − γ

1 + γ
. (2.14)

Figure 2.2: A graph of the branching angle ω versus
the branching ratio χ for four different values of the
bulking ratio γ. The equal-branch (χ = 1) solution,
ω = 2 cos−1 γ, holds approximately for χ > 0.6.

Equation (2.11a) shows that the angle θω increases
with decreasing χ, while (2.11b) shows that θ′ω decreases
with decreasing χ, both as expected. Moreover, as χ
becomes small (think twig) the corresponding bulking
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ratio γ must approach one (even branching), again as
expected.

For the case of small χ, branching angles ω > 90◦

is curious; it suggests that a twig can be reflexed i.e.
angled back on its incoming branch. Either this is an
unrealistic artifact of the theory, or perhaps it allows
for the unusual case that ample light is found in the
interior regions of the tree promoting reflexed behavior?
It is this author’s intention to pursue this matter.

Consider a branch segment as shown in Figure 2.1
with the incoming branch starting at point Q, the opti-
mized branch point at O, and the outgoing branch ends
at points P and P ′. From Figure 2.2, the volume V (as
given in (2.5)) is a monotonically increasing function of
the bulking ratio γ, for given value of χ. This implies
that less volume of wood is needed to connect point Q
with P and P ′ if the bulking up is low; thus, the branch-
ing angle high.

2.3 Field Measurements

Prior to conducting the theoretical work described in
the preceding section, I measured the cross-sectional ar-
eas of the incoming and outgoing branches of 124 forks
representing 21 species of trees and tall shrubs near Den-
ver, Colorado. In terms of the ratio bulking ratio defined
in (2.1), I found that, γav ± Δγ = 0.877± 0.105, where
0.105 is the standard deviation. The probability that the
population mean γ∗

av = 1, given my data, is infinitesimal.
The only requirement I imposed on the specimens was

that all the branches be relatively round so that the cir-
cumference squared would serve as a proxy for area. (To
measure the circumferences I used a flexible measuring
tape wrapped just beyond the swollen region of the fork.)
Fortunately, 103 of my earlier measurements were “sim-
ple” forks for which I had also measured (with a large
two-armed protractor) the branching angle ω. It was
surprising to me, incidentally, how few forks were of this
simple two-branched variety. Most forks involved three
or more out-going branches, some forks were within the
swollen zone of neighboring forks, and some forks were
simply not round enough or too disfigured to qualify. I
measured forks with circumferences ranging from a few
millimeters to meters. Where possible, I would select
forks on recently dead branches without bark so as to
focus attention on supportive tissue alone.

I did not attempt to collect a scientifically random
sample; I just selected trees and shrubs of as many dif-
ferent species which were convenient for me to measure.
I did not distinguish between forks in branches, branches
off the main stem, or bifurcations of the main stem. Be-
cause I am interested in “universal” properties of woody
plants, I sampled as broad a representation of species
and sizes as possible. My data set is not large enough

to distinguish quantitatively agreement within species or
differences between species, although I have noted some
such regularities.

Figure 2.3 shows a graph of branching angle ω versus
bulking ratio γ for forks with out-going branch area ratio
χ > 0.6. Forks with χ > 0.6 (somewhat equally sized
out-going branches) obey, approximately, (2.13).) Here,
76 of the 103 specimens meet this criterion.

Figure 2.3: A graph of the measured values of the
branching ratio ω versus the bulking ratio γ for 76 speci-
men of trees and shrubs of branching ratio χ > 0.6. The
data is represented by ellipses whose dimensions gives
the average measurement error. The smooth curve gives
the theoretical dependence ω = 2 cos−1 γ.

The trend of the data is in agreement with the theory,
but the spread is too great to make any meaningful com-
parison with theory. This spread might well be due to
environmental factors affecting the forking. Moreover,
with regard to theory, the minimum in volume, from
which the theoretical branching angle is determined, is
both broad and shallow. This means that there is little
penalty in tree resource if the optimum branching angle
is not achieved. (Perhaps the curve of ω versus γ should
be drawn with a broad pen.)

On the other hand, environmental factors alone could
account for the spread of the data about the theoretical
curve. From field observation, considerable variation in
both γ and ω can be seen within a given tree as well
as between trees of the same species. Indeed, the varia-
tion of branching angle within a species is often as great
as the difference between species. Considerably more
data is needed to elucidate possible systematic relation-
ships between γ and ω. Longitudinal sectioning of a few
(eight) forks revealed that the branching angle as mea-
sured at the pith lines is generally the same as the angle
measured with whole branches.
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2.4 Discussion and Summary

The “bulking up” of branches, as measured by γ seems
to be an empirical fact, at least for the vast majority of
trees and woody shrubs in this temperate zone. Like-
wise, the increase in branching angle ω with increasing
γ is strongly suggested. It is reasonable to believe that
branching angle is genetically controlled; my measure-
ments on young sprouts (not included in this report)
show significant variation around the average. Perhaps
those branches that are favorably oriented have a better
chance of surviving to maturity and being measured by
a curious researcher.

The value of this study to conventional tree archi-
tecture is in the constraints it imposes on branching.
But with respect to understanding the morphological
implications of genetic control, this work could provide
a theoretical framework. As the branching angles were
measured on relatively mature trees, environmental fac-
tors have had time to operate. Perhaps sectioning more
branches longitudinally (as advocated by Shigo (1994))
through the forks and measuring the initial branching
angles at the core (point O in Fig. 2.1) would be more
appropriate.

This author is under no illusion that the theory pre-
sented here provides the primary explanation of fork
morphology. There is, however, strong empirical evi-
dence that “bulking up” occurs and that branching an-
gle ω is related to the bulking ratio γ . The minimum
volume theory presented here provides a plausible ex-
planation for that relationship.

Part 3:

Trunk

3.1 Introduction

The objective of this Part is to exploit the concepts
of the first two Parts of the report to further test of
the validity of those ideas. In particular, the shape of
the main stem (i.e. the cross-sectional area of the main
stem as a function of position) is deduced from the pro-
file of the tree and the angle of branching off the main
stem. This study is limited to trees with a single main
stem whose primary branches make an angle of 90 de-
gree with the trunk. The theoretical results, then, are
compared with actual measurements on three represen-
tative trees: a douglas-fir (Pseudotseuga menziesii), a
juniper (Juniperus scopulorum), and an aspen (Populus

tremuloides). As this study is intended merely as a check
on the preceding studies, no effort was made to include
a greater number of individuals or a broader variety of
species. (Trees featuring both a single main stem and
perpendicular branching limited the number of species
available, especially among deciduous trees.)

3.2 Mathematical Set-up

The average behavior of branches off the main
stem can be modeled as a distribution of infinitesi-
mal branches, each originating at the axis of the main
stem, projecting perpendicular from the axis to a ter-
minal point at coordinate r, θ, z, where one can imag-
ine an infinitesimal leaf. Assuming exponential increase
of branch area towards the main stem, and a terminal
branch area proportional to the density of leaves at that
point, the element of cross-sectional area d3a at the main
stem (approximated as r = 0) can be written

d3a ∝ exp[αr] exp [−b(R[z] − r)] rdrdθdz, (3.1)

where R[z] gives the profile as defined in Part 1; α and
b are constants as defined previously. Expression (3.1)
can be integrated first over θ (the partial integral being
2π) and then over r to yield.

da =
Cb

(α + b)2
(
((α + b)R − 1) exp[αR] +

+exp[−bR]
)
dz, (3.2a)

where R = R[z] and C is a constant.
With the introduction of the dimensionless variables

defined above Equation (1.12): (3.2a) can be written

da = C
1

(1 + e)2
(
((1 + e)R− 1) exp[eR] +

+exp[−R]
)
dz, (3.2b)

where, again, z = bz, R = bR, and e = α
b , a = b2a, and

R = R[z].
As applied to the fork formed by the main stem and

the infinitesimal branch intersecting at a length element
dz, the bulking ratio γ (equation (2.1) is given by

γ =
A[z + dz]
A[z] + da

=
A[z] + dA

dz dz

A[z] + da
dz

dz
= 1 − dγ, (3.3)

where

dγ =
1
A

(
da

dz
− dA

dz

)
dz (dγ ≥ 0). (3.4)
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Tree c (1/b)[cm] R[z] e C
√

variance
Juniper 1.11 2 0.5z 0.012 6.6*10−3 0.02
Aspen 0.88 25 0.36

√
46z − z2 0.04 1.0*10−4 0.04

Douglas-fir 0.99 3.5 .093
√

2160z − z2 0 1.15*10−2 0.02

Table 3.1: Best fit values of the profile parameters: c and 1
b , the quadratic equation for the conic approximation:

R[z], the trunk parameters: e, C, and the square-root of the variance:
√

variance. (In the analysis, the parameters
e, C were adjusted to render the variance a minimum.) The

√
variance has been normalized by dividing by the

maximum trunk area to render the values comparable.

In Part 2, the bulking ratio γ was shown to be a func-
tion of both the branching ratio χ and the branching
angle ω. If dγ in (3.4) is replaced by dγ

dχdχ and rear-
ranged, then

dA

dz
=
(

1 − dγ

dχ

)
da

dz
;

thus,

A[z] =
∫ z

0

(
1 − dγ

dχ

)
da[z′]
dz′

dz′. (3.5a)

In dimensionless variables,

U[z] =
∫ z

0

(
1− dγ

dχ

)
da[z′]
dz′

dz′. (3.5b)

The branching ratio dχ is given by

dχ =
da

A
. (3.6)

Taking χ as its average over an element of distance
Δz, and writing Δa = da

dz Δz. then,

χ =
1
A

da

dz
Δz. (3.7a)

In dimensionless variables,

χ =
1
U

da

dz
Δz. (3.7b)

For the purpose of this Part, the branching angle is
set at 90◦ (ω = π

2
). As an explicit expression for γ as a

function of χ is not available, an approximate expression
was derived in the form of the third degree polynomial:

γ = 1 − χ + (3γ1 − 1)χ2 − (2γ1 − 1)χ3, (3.8)

where γ1 is the value of γ at χ = 1; in general, from
(2.13),

γ1 = cos
[ω
2

]
. (3.9)

If ω = π
2
, then γ1 = 1√

2
. The coefficients of (3.8) were

determined by first considering that at χ = 0, γ = 1; and
at χ = 1, γ = γ1. Then, following (2.11, 2.12), the par-
tial derivative ( ∂γ

∂χ)ω (i.e. ω is held constant at π
2 ) was

evaluated at its limiting values; at χ = 0, ( ∂γ
∂χ

)ω = −1;
and at χ = 1, ( ∂γ

∂χ)ω = 0. The gains in both conve-
nience and insight by using the approximation contained
in (3.8) are significant.

The cross-sectional area A[z] of the trunk as a func-
tion of distance from the tree top is given by (3.5a); da

dz

by (3.2). Now, dγ
dχ is just the derivative of (3.8), wherein

χ can be expressed in terms of z by (3.7a). (For working
purposes, I carried out this analysis using the dimen-
sionless variables, the (b) equations.)

Equations (3.5) for area requires knowledge of χ from
(3.7), which in turn requires knowledge of area. Here,
the following iterative procedure was used: First, set the
derivative dγ

dχ = 0 (this is equivalent to setting γ = 1,
no bulking-up). Then (3.5) can be integrated to yield a
first approximation of area. Substitution of this expres-
sion for area into (3.7) gives χ[z]. Next, substitution of
χ[z] into the derivative of (3.8) yields dγ

dχ as a function
of z, which, in turn, can be substituted back into the in-
tegral of (3.5) to produce a new A[z]. This process can
be repeated as often as needed; however, convergence is
fast.

3.3 Field Measurements and Analysis

Three trees of significantly different forms (k val-
ues) were selected (Tab. 3.1) for presentation: juniper
(Juniperus scopulorum), aspen (Populus tremuloides),
douglas-fir (Pseudotsuga menziesii). The determination
of trunk areas as functions of position along the trunk re-
quired the direct measurement of trunk circumferences.
(This requires access to the crowns of suitable, mature
trees - a problem for one without a “cherry-picker”).
Photographs of the trees were used to establish the pro-
files of the trees, thus their k values as developed in Part
1. Following the iterative procedure described above,
theoretical values of area A[z] were calculated (Figure
3.1a-c). The variance between the measured and theo-
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Figure 3.1: Calculated values of areas A[z] and variance
between the measured and theoretical areas for each of
the three cases (a-top; b-middle; c-bottom.)

retical areas for each of the three cases was calculated.

3.4 Discussion and Summary of Part 3

In Part 3, the concepts of Parts 1 and Part 2 are
tested by combining them to predict the cross-sectional
area of the trunk of a tree with a single main stem and
horizontal branches. No new concepts are introduced.
To further simplify the analysis, conic approximations
(as introduced in Part 1) are used to represent the profile

R = R[z].
The data is well matched by the theory as shown in

the Figure 3.1 wherein the two free parameters, e, C. are
adjusted to find the (unique, I believe) minimum in the
variance. As in other aspects of this study, the minimum
is broad with respect to the two parameters. Although
the results of this Part support the concepts of Parts 1
and 2, it must be cautioned that other two parameter
models (quadratic) can also be adjusted to fit the data.

The dotted curve in Figure 3.1c gives the trunk area
if the trunk were a perfect cone with base near z =
700cm. This curve is presented because a trunk is often
modeled as a cone in estimating the volume of wood,
an approximation which seems to under-estimates the
volume, as would be prudent.

General Summary

The results of this study does not constitute a tree
model in the manner of the pipe models of (Shi-
nozaka et al. 1964a,b), (Valentine 1985), (Rennolls
1992), etc., but it presents theoretical considerations rel-
evant to such whole-tree models.

The basic assumption here is that the architecture of
the tree will be such as to minimize plant tissue while
providing for the tree’s needs. In Part 1, the overall
shape of trees is considered, with an eye to the distribu-
tion of leaves (photosynthetic units); in Part 2, branch-
ing is considered, with the angle of branching of primary
interest. The mode of investigation is mathematical,
with the calculus of variation the central tool. The mod-
els developed are checked against field measurements.
Although the agreement between theory and measure-
ment is reasonable it falls far short of “validating” the
models. Only the most obvious of predictions are tested.
The possible taxonomic connections suggested by the
models are barely touched upon.

Although it is this author’s intention to continue the
field work, there are problems in my so-doing: Ac-
cess to the canopies of mature trees is difficult in most
cases. Finding trees that are more-or-less undeformed
by crowding, damage, or disease is often an issue; most
trees in an open forest are suitable for my purposes, but
obtaining telephoto images of individual trees is diffi-
cult And most challenging is finding ways to easily and
cheaply measure leaf density; direct leaf counting is un-
duly tedious.

The theoretical results take the form of constrained
minimizations. In both cases (Parts 1 and 2) the min-
ima are shallow and broad, meaning that the tree does
not pay a serious price in plant tissue (as measured by
the present models) in deviating from the optimum. The
author is quite aware that factors other than the ones
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considered here are important in tree morphology. How-
ever, the agreement between theory and measurement is
sufficiently good to suggest that the ideas presented here
be considered reasonable hypotheses.
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