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ABSTRACT. The ability to automatically delineate forest stands and determine their age is useful for natural
resources professionals. Two common approaches to estimating forest area and age-class distributions are
inventory-based methods, such as Forest Inventory and Analysis (FIA), and remote sensing based methods.
Vegetation Change Tracker (VCT) is an algorithm that uses time series stacks of Landsat images to
identify forest disturbances. However, additional computation is required to identify type of disturbance.
This paper evaluates the usefulness of machine learning tools, such as support vector machine (SVM), for
reclassifying VCT disturbances as stand-clearing disturbances or partial disturbances. Overall accuracy
for a 2010 VCT disturbance map of the entire state of Virginia was determined to be 87 percent. 100
percent of 2010 Virginia clearcut harvests recorded in a reference dataset were classified as disturbances
by VCT. Neighboring disturbed pixels, as classified by VCT, were clumped together and reclassified
as stand-clearing disturbances or partial disturbances using SVM and variables for average disturbance
magnitude and shape and size metrics of the clumped pixels, with an overall accuracy rate of 86 percent.
The users and producers accuracy rates for stand-clearing disturbances were 88 percent and 95 percent
respectively. In addition, an algorithm was developed in R for determining years since last stand-clearing
disturbance for each pixel in a time series stack of reclassified VCT disturbance maps from 1984 to 2011.
Neighboring pixels of the same age, in number of years since last stand-clearing disturbance, were clumped

together and correspond, in general, to clearcut harvest boundaries.
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1 INTRODUCTION

The fact that there is value in mapping forest stands
is unquestioned. Distributions of forest by stand age
and type at various spatial scales provide valuable infor-
mation for optimizing forest production and sustainabil-
ity. Both field measured forest inventories and remotely
sensed data have been used to estimate forest area and
age. Each of these methods has its strengths and limi-
tations. Precise field measured inventory estimates from
sample plots are possible over large areas but are costly
for fine scale estimates across a large area due to the
large number of sample plots required. Remotely sensed
data can be obtained just as easily for a specific point
as it can for an entire image. Automated processing of
these large amounts of data is an obstruction that is be-
coming easier to overcome. While cost effective methods
for yearly, statewide, border-to-border mapping of forest
by age and major species group have been elusive they
are nonetheless obtainable.

The U.S. Forest Service Forest Inventory and Analysis
program (FIA) comprises the most comprehensive field
measurement of forest inventory today. The sampling
process utilizes a hexagonal grid system placed over the
forty-eight contiguous states. Each of the hexagons cov-
ers approximately six thousand acres. A forest inventory
plot is randomly located within each hexagon. Trees
are measured on four subplots within each plot, totaling
approximately 1/6 of an acre (Bechtold and Patterson
2005)).

Virginia contains approximately 4700 sampling
hexagons. This large sample size allows for accurate
estimates over large areas comprising the entire state or
multiple counties. However, Figure 1 demonstrates that
there can be a great amount of variation in forest distri-
bution over a six thousand acre hexagon that cannot be
represented on a small scale by one FIA plot. This high-
lights the value of smaller scale representation of timber
products and biomass at the stand or pixel level.
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Figure 1: Representation of variation in forest distribu-
tion over 6000 acre hexagons in central Virginia.

Timber product volume and biomass estimates at
small scales are difficult to obtain but increasingly valu-
able for sustainable forest management. Maps of forest
by major species groups are common, including nation-
wide land cover mapping such as the 30 meter pixel scale
National Land Cover Database (NLCD) land cover map
(Homer et al.[2015). Age estimates, in combination with
forest type, from remote sensing data at the stand or
pixel level can make a major contribution towards fur-
ther refining volume estimates at this small scale.

A simple way to calculate “age” of a forest is to mea-
sure the number of years since the last clearcut. Algo-
rithms using time series stacks of Landsat data, such as
Vegetation Change Tracker (VCT), have proven to be
reliable for detecting forest disturbances
. After other known dark objects such as water and
dark soils have been masked from Landsat images dating
back to 1984 (Landsat 4), VCT uses forest training pix-
els identified from the forest peak in histograms of top
of atmosphere reflectance in the near infrared and two
short-wave infrared spectral bands (Huang et al. 2008,
[Huang et al|[2010)). The means and standard deviations
of these training pixels in the red and shortwave infrared
bands are used to calculate an integrated forest z-score
(IFZ) for each pixel in the image (Huang et al|[2010)).

In time series of yearly height of season IFZ values,
forested pixels will remain persistently below a threshold
IFZ value, while non-forested pixels will remain above
the threshold or fluctuate above and below it
lal[2010). Thus, a sudden increase in a pixel’s otherwise
persistently low IFZ score indicates the timing of a for-
est disturbance within the time series. In this way, the
VCT algorithm described by Huang et al.|(2010) can be

used to generate VCT products such as yearly distur-
bance maps at the 30 meter pixel level. The magnitude
of these disturbances can also be calculated by finding
the difference between a pixel’s average IFZ score (or
other index) and its IFZ score for the disturbance year.
Normalized difference vegetation index (NDVI) and nor-
malized burn ratio index (NBRI), and IFZ4 are also in-
corporated in the VCT algorithm and used to calculate
similar measures of disturbance magnitude
. NDVI measures photosynthetic capacity us-
ing the red and near-infrared bands. The calculation
for NBRI is similar to NDVI but uses the near-infrared
band and short-wave infrared band (band 7). Changes in
NBRI can be used to measure burn severity. IFZ4 is cal-
culated similarly to IFZ but uses only the near-infrared
band. Maps of disturbance magnitudes of disturbed pix-
els measured each of these ways are in production for the
contiguous United States.

Within secondary succession forests, especially those
in which frequent harvest and regeneration occurs,
groups of neighboring 30 meter pixels representing forest
of the same age were most likely harvested together, or
cleared by some other mechanism, at some point in the
past. Clumping these neighboring pixels of the same age
together can be used as a method for creating objects
that conform to past harvest boundaries.

The Virginia Department of Forestry began keep-
ing records of all harvests in Virginia in 2009 in order
to facilitate inspections of best management practices
(BMPs). The GPS point location of the first logging
deck the BMP inspector comes to on the date of in-
spection is collected along with other harvest attributes.
Typically, there are five or six thousand harvests per
year in Virginia. Delineating these harvests with a GPS
during inspection or by post-harvest photo interpreta-
tion is costly and time consuming. Therefore, efforts to
automate this process and extend the records back to
1984, the first available year of VCT disturbance maps,
are worthwhile.

The combination of VCT disturbance maps dating
back to 1984 with several recent years of comprehensive
harvest records creates a convenient avenue to extend
the record historically, back to 1984, accurately placing
their occurrence spatially and temporally. This process
can be automated and used wherever VCT data is avail-
able, especially in areas dominated by harvest distur-
bances. Prior harvest locations are often the best indi-
cators of where future harvests will occur. Therefore, in
addition to extending harvest records historically, data
of this type can be used to help forecast the locations of
future harvests. Past and future harvest locations yield
valuable information for many uses, including timber
procurement, climate modeling, water resource model-
ing, and wildlife habitat analysis.
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Figure 2: Portion of 2010 Virginia VCT map.

This research demonstrates procedures for using
yearly VCT disturbance maps to create clumps of neigh-
boring pixels that were disturbed collectively. These
clumps can then be spatially linked to recent harvest
records, and metrics related to shape, size, and aver-
age disturbance magnitude of each clump can be used
to train machine learning tools used for classifying dis-
turbances as either stand-clearing or partial. Through-
out this paper the term “enhanced VCT” will be used
when referring to VCT disturbance maps that have been
reclassified to include only stand-clearing disturbances.
Raster stacks of stand-clearing disturbance maps can be
used to subsequently create an “age” map by calculating
the number of years since the last stand-clearing distur-
bance. The process for creating a map of this type for
Virginia will be described in the next section. VCT data
products are anticipated to be available nationally, cre-
ating opportunities to repeat these methods anywhere in
the contiguous United States, especially in areas domi-
nated by harvest disturbances.

2 METHODS

2.1 2010 VCT disturbance map validation VCT
disturbance maps and disturbance magnitude maps cre-
ated from the VCT algorithm were obtained for all of
Virginia. An accuracy assessment of the 2010 VCT dis-
turbance map for Virginia was performed using before
and after aerial photography, 2008 National Agriculture
Imagery Program (NAIP) and 2012 NAIP respectively.
Figure 2 depicts a portion of the 2010 VCT disturbance
map. VCT yearly disturbance maps are classified into

six groups: persisting non-forest, non-forest after a dis-
turbance, persisting forest, forest after a disturbance,
forest disturbed in the current year, and water. 100
sample points within each class were randomly chosen.
For simplicity the two non-forest groups (200 points to-
tal), and the two forest groups (200 points total) were
combined together. This assessment can be used to val-
idate the accuracy of using the map to identify each of
these classes, including forest and forest disturbances.

2.2 Evaluating the ability to detect clearcuts In
conjunction with the 2010 VCT disturbance map accu-
racy assessment the ability of VCT to detect clearcut
harvest was evaluated. VCT mapped all sample points
that were clearcuts as disturbances. In order to add
weight to this assessment the Virginia harvest records
were used to look for possible errors outside of the sam-
ple used for validation in which VCT classified a clear-
cut harvest as something other than a disturbance. All
harvest locations that did not intersect a VCT distur-
bance were inspected using the before and after aerial
photography in order to find out if there was perhaps
a stand-clearing disturbance that VCT missed. If VCT
is doing reasonably well at detecting stand-clearing dis-
turbances, the next step would be to reclassify all VCT
disturbances as stand-clearing or not.

2.3 Reclassifying forest disturbances by harvest
method It is known that VCT detects yearly forest dis-
turbances using a Landsat time series stack of one scene
per year during the height of growing season
. Sometimes more than one scene is used
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to allow for more cloud free pixels. The latest scene
used for Virginia in 2009 was taken on September 14th,
while the earliest scene taken for Virginia in 2010 was
on June 3rd. Therefore, point locations of Virginia tim-
ber harvest data records from the Virginia Department
of Forestry for inspections between these dates were in-
tersected with the 2010 VCT disturbance maps cover-
ing Virginia. This encompasses all of the land area in
Virginia within Landsat path/row scenes 14/34, 14/35,
15/33, 15/34, 15/35, 16/33, 16/34, 16/35, 17/33, 17/34,
17/35, 18/34, 18/35, 19/34, and 19/35.

Cells classified as disturbances within each VCT dis-
turbance map were evaluated for adjacency to neighbor-
ing disturbed cells with the Queen’s case of 8 directions
(right, left, above, below, or diagonal) using the ‘clump’
function in the R ‘raster’ package (Hijmans|[2015). In
this manner, connected groups of neighboring disturbed
pixels were assumed to be the result of the same forest
disturbance. Therefore, they were clumped together and
given a common identity. Since VCT detects both stand-
clearing disturbances and partial disturbances, the abil-
ity to calculate stand “age” must be facilitated by re-
classifying VCT disturbances as stand-clearing or not.
Classification of VCT disturbances by type using ma-
chine learning tools, including SVM, is appropriate and
has proven to be effective (Zhao et al.||2015]).

Average VCT disturbance magnitudes as measured by
IFZ, NDVI, NBRI, and IFZ4 were obtained for each dis-
turbance clump. In addition, various shape and size
metrics were calculated for each clump using the ‘Patch-
Stat’ function in the ‘SDMtools’ R package (VanDer-
Wal et al.|[2014]). Clearcut harvests tend to have higher
disturbance magnitudes, larger areas, and less complex
shapes as they conform to more linear parcel boundaries.

There were 1170 VCT disturbance clumps from 2010
that intersected with one of the harvest site point lo-
cations in the date range specified above. Half of the
disturbance clumps were used for training and half for
validation of three machine learning tools used to reclas-
sify VCT disturbance clumps as stand-clearing or par-
tial disturbances. k nearest neighbor (kNN; Meyer et
al.||2015)), support vector machine (SVM; |Venables and
Ripley|2002) , and the ‘rpart’ (Therneau et al.||2015)
R package classification algorithms were trained using a
somewhat arbitrary selection of variables, including dis-
turbance magnitudes measured three ways (IFZ, NDVI,
and NBRI), area, and fractal dimension index of the
training clumps. Fractal dimension index is a measure of
shape complexity. The kNN algorithm classifies a point
in the feature space according to the majority class of
a predefined number of nearest neighbors. SVM is also
a supervised classification algorithm that maximizes the
separation between two classes with a hyperplane. The
‘rpart’ package is an implementation of the Classifica-

tion and Regression Trees (CART) algorithm, following
Breiman et all [1984] in most details. CART and rpart
recursively split the feature space by finding the value of
a variable that separates the training sample data into
classes that minimize incorrect classification. In an ef-
fort to maximize automation of the reclassification pro-
cess, no further effort was made to calibrate the models
or select the most advantageous features for improving
accuracy. For the kNN algorithm, k=9 was arbitrar-
ily chosen for the number of nearest neighbors. Kernel
methods for producing non-linear classifiers are possible
with SVM, but the default ‘linear’ kernel was used for
simplicity. Each of the three trained models was used
to classify each member of the validation set as a stand-
clearing disturbance or a partial disturbance, and the
results were compared to the actual harvest data.

The trained machine learning classification tools were
used to reclassify each clump in each disturbance map
as a stand-clearing disturbance or not based on the ma-
jority class of the three models. This process was au-
tomated and repeated for the 15 Landsat scenes for
the entire study area, each year for the 28 years from
1984 to 2011, using R and its “raster” package (R Core
Team|2015, |Hijmans|2015). The resulting maps of stand-
clearing disturbances are what has been defined above
as enhanced VCT disturbance maps.

2.4 Calculating age R was also used to create a time
series stack of the enhanced VCT maps in order to calcu-
late the “age” of each pixel by determining the number
of years since the last stand-clearing disturbance. Neigh-
boring pixels of the same “age” using the Queen’s case
of 8 directions were clumped together and the “Elim-
inate” filter function in Erdas Imagine (Leica Geosys-
tems|2013) was used to clean edges and eliminate small
clumps less than five pixels. Thus, clumps smaller than
one acre were removed, and those pixels were back-filled
with information from the surrounding clumps.

3 RESULTS

The overall accuracy rate of the 2010 VCT distur-
bance map was estimated to be 87 percent. Accord-
ing to this assessment, an estimated 100 percent of the
2010 Virginia stand-clearing disturbances were classified
as disturbances by VCT. Furthermore, clearcuts from
2010 harvest records were overlaid with 2010 VCT dis-
turbances. This was done to insure that there was not
a clearcut harvest at the location of the harvest record
that VCT did not pick up. It was confirmed that VCT
did not miss any clearcut harvests. GPS point loca-
tions of harvests are taken at the first logging deck that
the forestry official comes to when inspecting the log-
ging site. Logging decks are most often on the edge of
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Table 1: Error Matrix with percent accuracy rates for machine learning classification of disturbances larger than 1

acre as recorded by VCT.

Method Error Matrix
Classification Data Reference Data
SVM Non-Clear-Cut  Clear-Cut
Non-Clear-Cut 7 23 0.77
Clear-Cut 57 428 0.882
0.575 0.949 0.863
rpart Non-Clear-Cut  Clear-Cut
Non-Clear-Cut 76 30 0.717
Clear-Cut 58 421 0.879
0.567 0.933 0.850
kNN Non-Clear-Cut  Clear-Cut
Non-Clear-Cut 64 34 0.653
Clear-Cut 70 417  0.856
0.478 0.925 0.822

Persistent
Forest

27

Figure 3: Virginia VCT “age” map enhanced by reclassifying disturbed pixels as stand-clearing or not.

the harvest site and are sometimes outside of the har-
vest site altogether, so it is not expected that all harvest
point locations will be within the actual boundaries of
the harvest.

The greatest overall reclassification accuracy rate was
achieved with SVM at 86 percent (Table 1). SVM cor-
rectly classified 95 percent of clearcuts but misclassified
42.5 percent of partial harvests. The results for kNN
and rpart were comparable.

An enhanced VCT “age” map for all of Virginia was
created (Figure 3). This map shows age as the number

of years since the last stand-clearing disturbance regard-
less of whether the cleared forest returned to forest or
remained non-forest. The total number of acres that
VCT considered persisting forest or disturbed forest for
at least one year in the timespan from 1984 to 2011 is
17.6 million (Figure 4). This compares with 16.2 million
acres if post-disturbance non-forest pixels as identified
in the most recent VCT disturbance map are removed.
Therefore approximately 8 percent of the pixels that are
given a forest “age” in the enhanced VCT “age” map
have either converted to non-forest, or have not regener-
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ated to the point that VCT can discern it is forest, with
IFZ values remaining above the forest threshold.

The enhanced VCT estimate of forest acres after re-
moving post-disturbance non-forest pixels is within the
95 percent confidence bounds of FIA forest acre esti-
mates using the 2011 population evaluation group, and
is less than 2 percent higher than the FIA point es-
timate 2016). It is also comparable to forest
area estimates using the 2011 NLCD land cover map
(Homer et al.|[2015). The NLCD “shrub/scrub” class
includes true shrubs and young trees less than 5 meters
tall. Much of what is classified as shrub in Virginia is
actually early successional forest or trees stunted from
environmental conditions. Therefore two NLCD totals
are shown in Figure 4. The first includes the decidu-
ous forest, evergreen forest, mixed forest, and woody
wetlands classes without shrub. The second also in-
cludes the “shrub/scrub” class. The NLCD estimates
are very close to the lower and upper 95 percent confi-
dence bounds of the FIA estimate, respectively.

18.0 ® VCT with post-
° disturbance nonforest
17.5 - FIA upper limit 95%
g confidence interval
= 17.0 NLCD with Shrub
=
=
© 165 - ® VCT without post-
g disturbance nonforest
16.0 X FIA point estimate
H NLCD no shrub
15.5 -
- FIA lower limit 95%
15.0 confidence interval

Figure 4: Estimates of forested acres in Virginia.

Figure 5 compares forest area estimates for the en-
hanced VCT with FIA in Virginia by age class
. These estimates generally coincide, but special
note should be made where enhanced VCT estimates
fall outside the confidence bounds of FIA. In addition
to low area estimates when excluding the pixels that
no longer look like forest in the 0-5, 6-10, and 21-25
year age classes, and the high estimates when includ-
ing these pixels in the 0-5 and 11-15 year age classes,
the enhanced VCT also overestimates forest acres when
compared with FIA in the over 25 age group, even when
post-disturbance non-forest pixels are excluded. The es-

Forest Area Estimates by Age Group

1.4

@ 19 _
S
= — ° ° -
= T e % 3 2
= 0.8 e T S
@ - L] L
20.6 ®

0.4

0-5 6-10 11-15 16-20 21-25
Age Class

® VCT without post-disturbance nonforest
® VCT with post-disturbance nonforest

X FIA point estimate

- FIA 95% confidence bounds

Figure 5: Forested acres in Virginia by age class, up to
age 25.

timate without post-disturbance non-forest pixels in this
age group is 12.5 million and rises to 12.7 million when
these pixels are included. Possible reasons for these dif-
ferences will be discussed in the next section.

Figure 6 shows the tendency of clumps of neighbor-
ing reclassified VCT disturbances of the same “age” to
conform to actual harvest boundaries. These clumps
also frequently conform to parcel boundaries (Figure 7).
Figure 8 shows how the resulting enhanced VCT gets rid
of isolated pixels and provides a more realistic determi-
nation of stand “age” by reclassifying disturbed pixels
in a 2010 thinning as a partial disturbance, giving the
accurate number of years since the most recent stand-
clearing disturbance.

4 DISCUSSION

This study demonstrates both the value of compre-
hensive harvest records for use in training and validating
machine learning models as well as the ability to success-
fully classify disturbance clumps by harvest method uti-
lizing shape metrics in an automated manner. It is the
intent that similar automated methods will be used to
reclassify VCT disturbances and create forest age maps
and harvest boundaries in other areas of interest.

In an effort to maximize automation for ease and ef-
ficiency in creating future age maps and harvest bound-
aries, the full capacity of the machine learning tools for
correctly classifying disturbances as clearcut or partial
harvests was not realized. Features were chosen without
testing to see which set might produce the highest accu-
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Figure 6: Depiction of ability of enhanced VCT to conform to harvest boundaries. Top: post-harvest NAIP aerial
photography with photo-interpreted harvest boundaries; Bottom: Same image overlaid with semi-transparent en-

hanced VCT "age” raster.

racy rates. Also, algorithm parameters were not tuned
to maximum accuracy. Some strategies that would not
hinder automation while improving accuracy can and
will be implemented. Four disturbance magnitudes and
various shape and size metrics were calculated for each
disturbance clump. One simple method for selecting
from these variables would be to exclude one variable
from each pair of highly correlated variables while keep-

ing all of the remaining variables. The results here show
that good accuracy rates can be obtained without tuning
model parameters. k=9 was arbitrarily chosen for kNN,
and the other algorithms required no parameter speci-
fication. Perhaps an arbitrary parameter specification,
such as k=9, could be used for kNN in the future, or
kNN could be replaced by another algorithm that does
not require parameter specification.
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Figure 8: The enhanced VCT map reduces salt and pepper effects and more accurately depicts stand age by reclas-
sifying disturbances such as this 2010 thinning as a partial disturbance before calculating years since most recent
stand-clearing disturbance.

It is possible that the method used to sample clumps
of disturbed pixels is biased towards clearcuts over par-
tial harvests. Partial harvests often appear as multiple
disjoint clumps in the same parcel rather than one solid
clump like most clearcuts. Thus, it seems that there is a
smaller chance that the logging deck of a partial harvest
will intersect a VCT disturbance clump. The actual pro-
portion of disturbances that are stand-clearing is likely

to be somewhere between the proportion observed in
the sample and 50 percent. It is unlikely to be below
50 percent because most partial harvests are followed
by a clearcut, but it is impossible for a stand to be par-
tially harvested after it has already been cleared. An im-
proved sampling process can overcome this deficiency by
intersecting harvests with parcels and then parcels with
disturbances. Otherwise, correcting for the bias in this
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sample indicates that if VCT detects all stand-clearing
disturbances and an equal area of partial disturbances,
the overall map accuracy rate could be as low as 76 per-
cent. On the other hand, by including parcel data, it
is likely that the number of disjoint clumps in a par-
cel could be a useful feature to help to distinguish par-
tial harvests and improve accuracy. Partial harvests are
more likely to appear as several disjoint clumps within
the same parcel, while clearcuts most often appear as
one contiguous clump.

In addition, the model used to classify harvest dis-
turbances as stand-clearing or not is also used for other
disturbances detected by VCT. This would indicate that
the sample is biased towards harvest disturbances. The
concern here seems to be minimal because harvests are
the overwhelming disturbance type by area in Virginia.
Other disturbances are likely to be so small that they
will not affect stand age. Nonetheless, opportunities ex-
ist to reclassify VCT disturbances using auxiliary GIS
data. These include conformance with parcel bound-
aries, shape metrics of disturbance clumps, LiDAR for-
est structure metrics, and variables such as distance to
road and slope. Harvests are unlikely to occur in areas
that are far from a road or with steep slope.

It should be noted that because a percentage of the
pixels with an associated age have converted to non-
forest and the number of years until regeneration begins
depends on forest type and management intensity, there
is room for improvement in the enhanced VCT “age”
map. An analysis of the percentage of pixels that were
classified as cleared according to the methods of this pa-
per and return to forest according to VCT in one-year
increments after disturbance is underway. Percentages
can be calculated by forest type and/or ecoregion in or-
der to shed light on differences in time to detect regen-
eration using VCT.

When considering the area estimates in Figure 4 and
Figure 5 it is important to note that there are differ-
ences in how forest is defined by VCT, FIA, and NLCD
(Huang et al.|2010, |Bechtold and Patterson|2005} [Homer
et al.|2015). VCT uses a threshold cutoff of an inte-
grated measure of number of standard deviations above
the mean a pixel’s brightness in the red and two short-
wave infrared Landsat bands is compared to the average
of a forest sample. FIA imposes area, width, stocking,
and use restrictions which are not accounted for with
VCT. The figures for NLCD do not include developed
open space which can include vegetation planted in de-
veloped areas for recreation, erosion control, or aesthetic
purposes. In addition the shrub/scrub class can include
forest areas where there are young trees in an early suc-
cessional stage that are less than 5 meters tall. However,
this class and the woody wetlands class can also include
true shrubs, of which there is very little in Virginia. It is

reasonable to believe that the total forest acres estimate
for the enhanced VCT exceeds FIA because there are
less restrictions on what it defines as forest.

Furthermore, higher estimates for enhanced VCT over
FTA are not consistent across age classes when excluding
VCT classified post-disturbance non-forest. This reveals
a time lag after a disturbance before VCT can detect a
return to forest. It is conceivable that the reclassified
enhanced VCT stand-clearing disturbance maps and the
enhanced VCT age map derived from them can be in-
telligently combined with information from NLCD or a
similar land cover map to arrive at a more accurate age
map. For instance, a disproportionately high number of
pixels that are classified as forest by VCT but grassland
by NLCD are in the 0-5 age group. Thus, VCT forest
pixels estimated to be older according to enhanced VCT
and are also classified as grassland according to NLCD
are less likely to be forest with the correct age estimate.
Perhaps some of these pixels were incorrectly classified
by VCT as forested and some are actually young forest
with incorrect older age estimates.

5 CONCLUSION

While the enhanced VCT product is a good proxy
for “age” and generally conforms to harvest boundaries,
some work remains. Despite the overwhelming presence
of secondary succession forest in Virginia due to clearcut
harvesting practices in the south, a majority of the forest
in Virginia has not been disturbed since 1984. Therefore
its age cannot be precisely determined, and large clumps
of undisturbed forest cannot be broken up into stand-
sized pieces using reclassified VCT disturbances. These
stand-sized pieces would be a good basis for modeling
future change. It may be possible to use variables such
as LiDAR height and structure metrics along with other
remotely sensed and auxiliary GIS data to create these
stand-sized units.

Additional work needs to be done to generate iden-
tities for unique harvests rather than unique clusters.
Partially forested parcels may include disjoint clumps
of harvested pixels even if the harvest was a clearcut.
Therefore parcel data should be combined with VCT
data to identify disjoint clearcut harvest clumps that
are most likely part of the same clearcut harvest. This
could be important for modeling efforts in which only
harvests that meet a minimum area threshold are con-
sidered. For instance, small harvests may be excluded
when modeling commercial wood supply. Further pro-
cessing should be done to combine adjacent clumps that
differ by one VCT year because a single harvest spanned
consecutive VCT years.

Even without addressing these imperfections, reclas-
sifying clumps of disturbed pixels in yearly VCT maps
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as stand-clearing disturbances or not based on average
disturbance magnitude, shape, and size results in a good
proxy for “age” and objects that conform to harvest
boundaries. The net result is an historical record of har-
vest boundaries that can also be used to predict when
and where future harvests will occur. A decades long
historical record begins to shed light on the impact of
variables such as policy change, social and cultural val-
ues, and ownership demographics on harvesting prac-
tices, although their overall impact may not be known
for many more decades. Estimates of biomass or timber
volume across time provide valuable data for procure-
ment foresters, landscape ecologists, climate scientists,
water resource experts, and many others.
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