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Abstract. Light detection and ranging (LiDAR) has become a common means for predicting key forest
structural attributes, but comparisons of alternative statistical methods and the spatial extent of LiDAR
metrics extraction on independent datasets have been minimal. The primary objective of this study was
to assess the performance of local and non-local LiDAR aboveground biomass (AGB) prediction models
at two locations in the Acadian Forest. Two common statistical techniques, nonlinear mixed effects
(NLME) and random forest (RF), were used to fit the prediction models and compared. Finally, this
study evaluated the influence of alternative plot radii for LiDAR metrics extraction on model fit and
prediction accuracy. AGB models were independently developed at each forest and tested both locally
(model applied to same forest used for development) and non-locally (model applied to different forest)
using an extensive network of ground-based plots. In general, RF was found to outperform NLME when
applied locally, but the differences between the approaches were negligible when applied to the non-local
dataset. NLME was found to perform equally well locally and non-locally. LiDAR extraction radius
had very little influence on model performance as well. Minimal differences between models developed
using fixed- and variable-radius methods were found, while the optimal LiDAR extraction radius was not
consistent among forests, statistical technique, or local vs. non-local. Overall, the results highlight the
importance of a robust calibration dataset that covers the full range of observed variation for developing
accurate prediction models based on remote sensing data.

Keywords: LiDAR, random forest, nonlinear mixed effects models, fixed-radius plots, variable-
radius plots, Maine, New Brunswick

1 INTRODUCTION

For forest inventory attribute predictions, the appli-
cability of light detection and ranging (LiDAR) data
has been widely investigated in various forest ecosys-
tems and geographic regions for more than two decades
(Hudak et al. 2009). A number of published studies
have examined how various factors such as LiDAR sen-
sor specifications (e.g. Ruiz et al. 2014), terrain con-
ditions (e.g. Su and Bork 2007), and stand structures
(e.g. Hayashi et al. 2014) influence model development
and prediction accuracy. While it is important to inves-
tigate these factors, other issues need to be examined

such as statistical modeling techniques, field plot type,
and spatial extent of LiDAR covariate extraction.

A number of studies have used parametric modeling
techniques, such as multiple linear regression, for de-
veloping stem volume and aboveground biomass (AGB)
prediction models. For example, Næsset (2004a) used
stepwise regression to develop three site and species spe-
cific volume prediction models for Norway spruce (Picea
abies L. Karst.) and Scots pine (Pinus sylvestris L.)
dominated poor and good site quality mature forests,
and birch (Betula pubescens Ehrh.) dominated young
forests in southeast Norway. These models had a co-
efficient of determination (R2) value of 0.97, 0.86 and
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0.83 for the young forest, the poor and good site qual-
ity mature forests, respectively. However, residuals in
the young forest and the good site quality mature forest
models had significant correlation with the proportion
of hardwood species in calibration plots. Likewise, Li
et al. (2008) used stepwise regression to develop three
forest site specific AGB prediction models for two sites
in Washington, USA and a site in Alaska, USA. To ef-
fectively parameterize species and structural variations,
Chen et al. (2012) developed AGB prediction models
using a linear mixed effects (LME) model in a mixed
softwood species forest in California, USA. Based on
National Agricultural Imagery Program (NAIP), visu-
ally classified vegetation types were assigned as random
effects in the LME model. This LME model had a R2

value of 0.83 and improved the root mean square error
(RMSE) by 10% when compared with a model with-
out random effects. To account for clones and stands,
Packalen et al. (2011) developed volume prediction mod-
els using a nonlinear mixed effects (NLME) model in a
Eucalyptus plantation in Brazil. Clone and stand were
assigned as random effects in the NLME model, which
had a relative RMSE of 11.8, 8.8, and 7.0% based on
only fixed effects, added clone random effects, and added
clone and stand random effects, respectively. However,
parametric approaches like regression have several lim-
itations including high sensitivity to influential obser-
vations, difficulty in handling several highly-correlated
variables, and assumed mathematical relationships (e.g.
linear or curvilinear). Despite these limitations, para-
metric methods can extrapolate beyond the range of the
fitting dataset.

In contrast, some studies have examined the appli-
cability of nonparametric modeling techniques because
they are not generally sensitive to distribution assump-
tions and collinearity in the data. In addition, determi-
nation of optimal number of covariates in a parametric
model is a difficult task because there is a need to bal-
ance parsimony with prediction accuracy. A common
nonparametric technique is random forest (RF) (Breiman
2001) because it can effectively select key covariates and
calibrate robust prediction models. For example, Yu
et al. (2010) used RF to develop a volume prediction
model in Norway spruce and Scots pine dominated bo-
real forests in Finland. Based on data from 23 inde-
pendent test plots, this model had a correlation coeffi-
cient (r) value of 0.79 with a relative RMSE of 20.9%.
Using the most similar neighbor (MSN) imputation ap-
proach, Kankare et al. (2013) developed an AGB predic-
tion model in Norway spruce and Scots pine dominated
boreal forests in Finland. Based on data from 254 in-
dependent test plots, this model had an adjusted R2

value of 0.71 with a relative RMSE of 24.9%. Hayashi
et al. (2014) used RF to develop a stem volume predic-

tion model in a multi-layered, mixed hardwood-softwood
species forest in central Maine, USA. Based on three se-
lected covariates from a total of 97 potential covariates in
LiDAR metrics, RF successfully parameterized a model
with a R2 value of 0.72 with a relative RMSE of 39.7%
despite the high species composition and stand struc-
tural variability of the forest. However, the effectiveness
of nonparametric methods like RF rely on the strength
of the underlying training data and the method may not
extrapolate well when applied to new locations, but this
has not been well tested to date.

While some studies have reported about validity of
the nearest neighbor (kNN) approach for various inven-
tory attribute predictions (Bollandsas et al. 2013; Mal-
tamo et al. 2009; Peuhkurinen et al. 2008; Vauhkonen
et al. 2010), RF has seemed to show superiority and
is generally the recommended nonparametric modeling
technique (Hudak et al. 2008). Based on high density
LiDAR data, aerial orthoimages, and Landsat Thematic
Mapper images, Latifi et al. (2010) examined four dif-
ferent modeling techniques when developing timber vol-
ume and AGB prediction models in Scots pine, beech
(Fagus sylvatica L.), and oak (Quercus petraea Liebl.
and Quercus rubra L.) dominated forests in southwest-
ern Germany. These four techniques were the kNN ap-
proaches based on (1) Euclidian distance, (2) Maha-
lanobis distance, (3) the most similar neighbor (MSN),
and (4) RF. The results of this study showed that the
RF-based volume and AGB prediction models had the
smallest relative RMSE. Using seemingly unrelated re-
gression (SUR), a parametric modeling technique, kNN,
and RF, Penner et al. (2013) developed stem volume
prediction models in a primarily black spruce (Picea
mariana Mill. B.S.P.) dominated forest in northeast-
ern Ontario, Canada. While all developed models were
validated using independent data, the study reported
that the kNN based prediction model had the lowest
prediction accuracy, while RF and eight different forest
type specific SUR modes had similar prediction accu-
racy levels. These authors noted that RF would have an
advantage over forest type specific SUR models because
RF did not require stand stratification data.

In addition to modeling technique issues, the porta-
bility of developed prediction models should be exam-
ined. Although some studies have evaluated their pre-
diction models using independent test data (e.g. Gob-
akken et al. 2013; Hawbaker et al. 2009; Maltamo et
al. 2009), the test data tend to be collected in areas
in close proximity to model calibration plots because of
time and budget issues. In contrast, Næsset (2004b)
has investigated the portability of developed prediction
models in areas apart from where the calibration data
were collected. In that study, the calibration plots and
independent test plots were approximately 80 km apart,
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and the developed models reasonably predicted inven-
tory attributes with respect to stand-level estimates.
For aboveground carbon density (ACD) prediction, As-
ner et al. (2009) reported that a large number of cali-
bration plots were not necessary if the calibration data
accounted for a range of forest conditions. Asner et
al. (2012b) also found that LiDAR derived mean crown
height values were strongly correlated with ACD pre-
diction in four tropical forests in Peru, Panama, Mada-
gascar, and Hawaii; however, regression slopes in each
model varied. Consequently, these authors were able to
successfully develop a ‘universal’ ACD prediction model
accounting for the four different tropical forests using
the LiDAR derived mean crown height with two ancil-
lary covariates. Given these findings, LiDAR prediction
models appear to be relatively robust when developed
using a strong calibration dataset, but this assumption
has not been extensively tested in temperate forests of
eastern North America, which can be relatively complex
due to the number of species present, the range of stand
structures, and past silvicultural treatments.

Finally, limited research has been conducted on the
influence of the type of ground-based plot and the ex-
traction radius for computing LiDAR metrics. Gener-
ally, fixed-radius circular ground plots and a LiDAR
metric extraction radii equal to the sample plot radius
are suggested (White et al. 2013). Although some re-
search has been done on the effect of fixed-radius plot
size on LiDAR calibration (e.g. Frazer et al. 2011; Gob-
akken and Næsset 2009), less work has been done on al-
ternative sampling methods such as variable-radius plots
despite their use in previous LiDAR studies (e.g. Falkow-
ski et al. 2010; Falkowski 2015; Scrinz et al. 2015). In
Maine, Hayashi et al. (2014) compared the use of fixed-
and variable-radius plots for LiDAR model calibration
and found relatively slight differences between model
performance (R2 of 0.82 and 0.76 for fixed- and variable-
radius plots, respectively). For ease of LiDAR metrics
extraction, Hayashi et al. (2014) recommend the use
of fixed-radius plots, but there would be several ad-
vantages of using variable-radius plots due to the effi-
ciency of measurement and ability to provide unbiased
estimates of forest structural attributes (e.g. Rice et
al. 2014). Since co-registration and other georeferencing
errors can significantly influence LiDAR model calibra-
tion accuracy (e.g. Gobakken and Næsset 2009), the use
of multiple LiDAR metric extraction radii could be ben-
eficial, particularly when only low-density LiDAR data
and/or variable-radius ground-data are available.

The goal of this analysis was to assess the accu-
racy and portability of developed average stand-level live
AGB (tonnes ha-1) prediction models using different sta-
tistical techniques, LiDAR metric extraction radii, and
model calibration datasets. The data were from two ex-

perimental forests in the Acadian Forest region, the Noo-
nan Research Forest (NRF) in New Brunswick, Canada,
and the Penobscot Experimental Forest (PEF) in Maine,
USA. These forests were selected because they cover a
range of stand conditions typical for the region, and have
a strong network of ground-based plots. The primarily
objectives of this analysis were to: (1) establish empir-
ical relationships between LiDAR data and AGB using
NLME and RF; (2) examine accuracy of the developed
prediction models on the local and non-local datasets;
and (3) asses various factors (e.g. field plot type, Li-
DAR metrics extraction radii, forest type) that influence
model development and implementation.

2 METHODS

2.1 Study Area This study was conducted between
the Noonan Research Forest (NRF) near Fredericton,
New Brunswick, Canada (N 45° 59’12”, W 66° 25’15”),
and the Penobcot Experimental Forest (PEF), near
Orono, Maine, USA (N 44° 49’30”, W 68° 39’00”) (Fig-
ure 1).

The distance between the NRF and the PEF is ap-
proximately 220 km. The NRF has been managed by
University of New Brunswick since 1985 and is about
1500 ha in size with 271 stands ranging in size from 0.5
to 47 ha. The U.S. Forest Service established the PEF in
1952 for conducting long term research regarding timber
management, stand dynamics and biological diversity
(Sendak et al. 2003). The total area of the PEF is 1619
ha, and various silvicultural treatments, which are repre-
sentative of typical northern Maine’s silvicultural prac-
tices, have been twice replicated in management units
ranging in a size of 0.5 to 23 ha. While both the NRF
and the PEF are a part of Acadian Forest (Loo and
Ives 2003; Sendak et al. 2003), the NRF is composed of
a mixture of relatively pure species, single cohort stands
(primarily coniferous species) to mixed species, multi-
cohort stands (primarily northern hardwood-softwood
species), while the PEF is primarily a mixed northern
hardwood-softwood forest.

In both the NRF and the PEF, the major hard-
wood species are red maple (Acer rubrum L.), birch
(Betula spp.), and aspen (Populus spp.), while the ma-
jor softwood species are spruces (Picea spp.), balsam fir
(Abies balsamea L. (Mill.)), and eastern white pine (Pi-
nus strobus L.). The range of elevation above sea level
is between 50 and 120 m on the NRF, and 20 and 70 m
on the PEF. The terrain at both sites is relatively flat.

2.2 NRF AGB Model Calibration Data
NRF model calibration data were collected from a to-
tal of 1410 sampling plots established in the summer of
2012. Each calibration plot was established at the inter-
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Figure 1: The Noonan Research Forest (NRF) near Fredericton, New Brunswick, Canada (N45° 59’12”, W66° 25’12”)
and the Penobscot Experimental Forest (PEF) near Orono, Maine, USA (N44° 49’30”, W68° 39’00”). The distance
between the NRF and the PEF is approximately 220 km.
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Table 1: Inventory attributes (mean and standard deviation, in parentheses) by forest type and experimental forest.
DBH is diameter at breast height (cm), VOL is stem volume (m3 ha-1) and AGB is aboveground biomass (tonnes
ha-1).

Forest type Definition Plots DBH VOL AGB
(#) Mean (SD) Mean (SD) Mean (SD)

Noonan Research Forest
Hardwood Basal area of hardwood ≥ 70% 249 20.19 6.25 141.5 83.9 128.5 61.3
Softwood Basal area of softwood ≥ 70% 682 20.02 7.72 131.1 79.3 93.8 56.6
Mixedwood Basal area of softwood or

hardwood < 70%
479 20.46 5.19 168.8 74.2 133.9 51.7

Overall - 1410 20.17 6.82 145.8 80.2 111.8 59.5

Penobscot Experimental Forest
Hardwood Basal area of hardwood ≥ 70% 2 18.37 4.52 25.9 21.8 20.1 16.1
Softwood Basal area of softwood ≥ 70% 29 21.99 9.99 187.3 132.9 108.0 62.3
Mixedwood Basal area of softwood or

hardwood < 70%
86 19.50 7.03 120.4 86.2 76.0 44.7

Overall - 117 21.26 9.36 167.9 126.2 98.5 60.2

sections of a 100 m × 100 m grid laid over the study area.
Using a 2M basal area factor (BAF; 2 m2 ha-1tree-1 tal-
lied) angle gauge, species and diameter at breast height
(DBH) were recorded for trees greater than 6.0 cm in
DBH. AGB for all tallied trees was predicted with a
species-specific equation (Jenkins et al. 2003). Using the
per ha expansion factor, individual tree AGBs on each
calibration plot were aggregated to a per unit area esti-
mate of AGB (tonnes ha-1). Each calibration plot was
stratified into one of three forest types based on species
basal area (Table 1).

In addition to the primary forest inventory described
above, there was a small network of 0.04 ha fixed-area
permanent sample plots located on the same 100 m by
100 m grid. On these plots, species DBH, and total
height are measured on a 5-year cycle with the last re-
measurement occurring in summer 2014. A total of 84
plots were available in this network of plots. These sam-
ples will be used to compare field measured and LiDAR
predicted AGBs between field plot types.

2.3 PEF AGB Model Calibration Data For model
calibration data, the PEF’s long-term study dataset was
used (Brissette et al. 2012). From this dataset, 11 repli-
cated management units (a total of 22 silvicultural treat-
ment units) were selected. Within these 22 manage-
ment units, a total of 117 permanent fixed area, nested,
circular sampling plots were established (3–7 plots per
management unit). Species and DBH for trees ≥ 6.4
cm (2.5 inches) and < 11.2 cm (4.5 inches) DBH were
recorded on 0.02 ha (0.05 acre) plots, and trees ≥ 11.2

cm DBH were recorded on 0.08 ha (0.20 acre) plots. The
PEF uses a 10-year inventory cycle for the long-term
research data collection; therefore, the latest remeasure-
ments were conducted between 2003 and 2009 depending
on management unit. The LiDAR data were acquired in
2010, and the Acadian Variant of the Forest Vegetation
Simulator (Weiskittel et al. 2012) was used to project
DBH to 2010. Based on projected DBH, AGB for all
recorded trees were predicted using species-specific equa-
tions (Jenkins et al. 2003). With the appropriate per ha
expansion factors, individual tree AGBs at each perma-
nent sampling plot were aggregated to plot-level AGB
(tonnes ha-1). Each permanent sampling plot was strat-
ified into one of three forest types using the same defi-
nitions as the NRF.

2.4 LiDAR Data On the NRF, airborne full wave-
form LiDAR data were acquired under a leaf-off condi-
tion on October 21 and 22, 2011, using a Riegl LMS
Q680i laser scanner. The mean flying altitude above
sea level was about 724 m. This sensor generated the
pulse repetition frequency of 180 KHz, and the laser
wavelength was 1550 nm with a scan angle of < 28.5˚
from the nadir. This scan angle was relatively wider
than scan angles suggested in certain LiDAR data ac-
quisition guidelines such as the US Geological Survey
National Geospatial Program LiDAR Guideline (Heide-
mann 2012). While narrower scan angles would lead
to improve accuracy in the creation of digital elevation
models, the wider scan angle in this study likely bet-
ter sensed vegetation structures under dominant and
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codominant tree crown positions. In general, LiDAR
height metrics like the ones used in this analysis are rel-
atively insensitive to scan angles up to 30° (e.g. Holm-
gren et al. 2003). The mean pulse density was 3 pulses
m-2 per swath (this was flown at 50% overlap providing
a final density of 6 pulses m-2) with a footprint of 0.35
m, and the sensor collected up to 8 returns per pulse.

On the PEF, airborne discrete-return LiDAR data
were acquired under a leaf-off condition on November 10,
2010, using an Optech Gemini 246 sensor. This LiDAR
data were also used and described in detail in Hayashi
et al. (2014). Although the data were intended to be
acquired under a leaf-off condition, most hardwood trees
kept leaves in the PEF due to an abnormal prolonged
summer period in 2010. The mean flying altitude above
sea level was about 1982 m. The sensor generated the
pulse repetition frequency of 5000 KHz, and the laser
pulse intensity was 1064 nm with a scan angle of < 20°
from the nadir. The mean pulse density was 1.1 pulses
m-2 with a footprint of 30 cm, and the sensor collected
up to 4 pulse returns.

Both LiDAR data acquired in the NRF and the PEF
were processed using a custom algorithm in R v3.02 (R
Development Core Team 2013). Based on 10, 15, 20,
25 and 30 m radius circles, this program extracted Li-
DAR metrics at matched locations between calibration
plots in the field and LiDAR data. While some studies
have examined how different sizes of calibration plots
in the field influence model development (e.g. Asner
and Mascaro 2014; Gobakken and Næsset 2008; Ruiz et
al. 2014), this study examined how the extraction area
for the LiDAR metrics influenced model fits. Since the
calibration data in the NRF were collected based on a
variable-radius sampling scheme, they did not have a
specific plot area like fixed radius plots (average inclu-
sion zone radii, based on quadratic mean DBHs, were
between 10 – 30 m). Similarly, calibration data in the
PEF were collected based on the 0.02 ha (7.98 m radius)
and 0.08 ha (15.96 m radius) nested circular plots. For
both forests, pulse returns below 2 m from the ground
were disregarded based on preliminary findings. The
algorithm computed a total of 15 potential covariates
(Table 2) for developing AGB prediction models. ABG
was used for consistency with other similar studies in
the remote sensing literature (preliminary analysis indi-
cated that AGB prediction models gave similar results
as ones used to estimate total standing volume).

2.5 LiDAR Metrics The LiDAR data were read into
the R statistical package from LAS-format files. Since
this study was focused on the structural attributes, only
the X-Y-Z coordinates of the LAS data were used. GPS
coordinates of field sample locations were used to ex-
tract LiDAR data in 10, 15, 20, 25, and 30 m radii about

the sample location. For each location, two types of Li-
DAR metrics were extracted: 1) canopy surface metrics;
and 2) LiDAR point cloud vertical distribution metrics
(Table 2). Several LiDAR density metrics were tested
in preliminary analyses, but none were selected as im-
portant predictors of AGB. Five canopy surface metrics
were calculated using the canopy surface model: maxi-
mum canopy height; mean canopy height; and the 25th,
50th, and 75th height percentiles of the canopy surface
model. Nine point cloud vertical distribution metrics
were extracted: mean height of the point cloud and the
25th – 95th quantiles in 10 percentile increments. The
final metric extracted was the height corresponding to
maximum LiDAR density Preliminary analysis indicated
that metrics related to the variability of height (skew-
ness, standard deviation) were unimportant and not in-
cluded in this analysis.

2.6 Fixed versus Variable Radius Field Data
The 84 grid intersections at NRF, where both fixed-
radius PSPs and variable-radius Inventory plots were
available were used to test for effects of field data type
on LiDAR AGB predictions. The NLME models de-
scribed below were fitted separately to the subset of 84
sample locations using field estimates of AGB based on
fixed-radius PSPs and variable-radius inventory plots.
Field estimated AGBs and the resulting LiDAR pre-
dicted AGBs were compared between the fixed-radius
PSPs and variable-radius inventory plots using graphi-
cal methods and equivalence tests (Robinson and Froese
2004).

2.7 Parametric Modeling Technique NLME was
used to develop average stand-level AGB (tonnes ha-1)
prediction models based on the 1410 and 117 calibration
plots collected in the NRF and PEF, respectively. For
selecting covariates for the NLME model, boosted re-
gression trees (De’Ath 2007) were used. A major advan-
tage of boosted regression trees is that relative impor-
tance between selected covariates is easily determined.
Also, unlike indirect methods such as Akaike’s Informa-
tion Criterion (AIC), boosted regression trees are robust
to nonlinearity and multicollinearity within and between
covariates. Using boosted regression in the “caret” pack-
age (Kuhn 2008) available in R v3.02, two LiDAR covari-
ates were selected for developing AGB prediction models
for the NRF and PEF. The models were of the general
form:

AGB = β0X
β1

1
Xβ2

2 (1)

Where AGB is aboveground biomass (tonnes ha-1); X1

and X2 are covariates selected in the boosted regression
step described above; βj are parameter estimates for the
fixed effects. Random effects, using forest type as a nest-
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Table 2: Mean, standard deviation (StDev), and range {Min, Max} of potential LiDAR covariates (m).

No. Potential Covariates Abbreviation Mean StDev Min. Max.

Noonan Research Forest
1 Maximum canopy surface height. maxCHT 18.99 4.82 0.4 42.4
2 Mean canopy surface height. meanCHT 9.68 4.34 0.1 4.34
3 25th percentile of canopy surface height. q25CHT 7.3 4.7 0.0 21.6
4 50th percentile of canopy surface height. q50CHT 9.98 4.95 0.0 22.9
5 75th percentile of canopy surface height. q75CHT 12.29 4.93 0.0 24.9
6 Mean point cloud height. meanHT 7.25 2.71 0.3 16.3
7 Height of 25th percentile of point clouds. q25LiDAR 4.05 1.99 0.2 12.3
8 Height of 35th percentile of point clouds. q35LiDAR 5.31 2.42 0.2 14.9
9 Height of 45th percentile of point clouds. q45LiDAR 6.53 2.83 0.2 16.6

10 Height of 55th percentile of point clouds. q55LiDAR 7.75 3.24 0.3 18.1
11 Height of 65th percentile of point clouds. q65LiDAR 8.97 3.61 0.3 19.6
12 Height of 75th percentile of point clouds. q75LiDAR 10.23 3.9 0.3 21.5
13 Height of 85th percentile of point clouds. q85LiDAR 11.68 4.14 0.3 23.3
14 Height of 95th percentile of point clouds. q95LiDAR 13.83 4.34 0.3 26.9
15 Height of maximum point cloud density HTmaxDens 5.79 4.93 0.3 21.8

Penobscot Experimental Forest
1 Maximum canopy surface height. maxCHT 18.85 4.79 8 35.1
2 Mean canopy surface height. meanCHT 6.85 2.72 1.2 19.6
3 25th percentile of canopy surface height. q25CHT 3.12 2.77 0.0 16.3
4 50th percentile of canopy surface height. q50CHT 6.6 3.37 0.1 21.7
5 75th percentile of canopy surface height. q75CHT 10.25 3.72 1.6 24.3
6 Mean point cloud height. meanHT 7.37 2.41 2.1 19.4
7 Height of 25th percentile of point clouds. q25LiDAR 4.13 1.97 0.6 15.3
8 Height of 35th percentile of point clouds. q35LiDAR 5.29 2.31 1.2 18.9
9 Height of 45th percentile of point clouds. q45LiDAR 6.44 2.6 1.6 20.5

10 Height of 55th percentile of point clouds. q55LiDAR 7.65 2.86 1.8 21.6
11 Height of 65th percentile of point clouds. q65LiDAR 8.95 3.13 2.1 22.2
12 Height of 75th percentile of point clouds. q75LiDAR 10.35 3.42 2.6 23.9
13 Height of 85th percentile of point clouds. q85LiDAR 12.01 3.69 3.3 25.8
14 Height of 95th percentile of point clouds. q95LiDAR 14.45 4.05 4.9 28.7
15 Height of maximum point cloud density HTmaxDens 5.25 4.25 0.3 22.8

ing factor, were added to each variable and maximum
likelihood ratio tests used to assess significance.

The models for the NRF and PEF will be designated
as NLMENRF and NLMEPEF, respectively. The nota-
tion, NLMEXXX/YYY will be used to refer to “fitting
data/test data” (for example NLMENRF/PEF refers to a
model developed using NRF calibration data, and val-
idated using PEF test data). In preliminary analysis,
we examined the use of additional covariates (up to 5),
but R2 values in these NLME models were marginally
improved compared to the NLME models with two co-
variates, and parameter estimates were often not signif-
icantly different from 0. The “nlme” package (Pinheiro
et al. 2014) available in R v3.02 was used to fit Equa-

tion 1 to the NRF and PEF data. Five different AGB
models were developed corresponding to the 5 different
LiDAR extraction radii (10, 15, 20, 25, and 30 m) for
each forest.

2.8 Nonparametric Modeling Technique RF was
used to develop stand-level average estimates of AGB
(tonnes ha-1) prediction models based on the calibra-
tion plot data collected in the NRF and PEF. As its
name infers, RF grows a forest based on a number of
constructed regression trees. At the beginning, RF ran-
domly separates a given dataset to two groups, one for
training and the other for testing. In general, 1/3 of the
given data are used for testing. Second, to construct re-
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gression trees, RF uses bootstrapped datasets from the
training data with replacement. To split at each node,
RF estimates mean square error (MSE) using the test
data, while trying randomly chosen potential covariates
without replacement, and RF disregards covariates with
larger MSE. In this study, 3,000 trees were set to grow
in RF for RFNRF and RFPEF models. While the default
setting in RF utilizes 1/3 of available covariates (Liaw
and Wiener 2002), this study utilized only two covari-
ates and stand type because RF models with additional
covariates only marginally improved R2 values in pre-
liminary analysis. Hereafter, the developed RF models
based on the NRF and PEF calibration data with four
covariates were called the RFNRF model and the RFPEF

model, respectively. As with NLME, RFXXX/YYY refers
to “fitting data/test data”. For these models, the “ran-
domForest” package (Liaw and Wiener 2002) available
in R v3.02 was used. Five different AGB models were
developed corresponding to the 5 different LiDAR ex-
traction radii (10, 15, 20, 25, and 30 m) for each forest.

2.9 Model Evaluation To evaluate model perfor-
mance, R2, root mean square errorr (RMSE), mean bias
(MB; observed – predicted), and mean absolute error
(|MB|; |observed - predicted|) between field-measured
and model predicted AGB were calculated and com-
pared. Negative and positive values in MB indicate
overestimation and underestimation by models, respec-
tively. Also, model fits were graphically examined using
a one to one plot between field-measured and model pre-
dicted AGB with a lowess smoothed line. In addition,
similarity between field-measured and model predicted
AGB was assessed using equivalence tests (Robinson and
Froese 2004), which have a null hypothesis of dissimarl-
ity. Finally, factors influencing model performance were
evaluated using model residuals and boosted regression.
Factors tested included: model source (NRF vs PEF);
model origin (local versus nonlocal); forest type, fitting
technique, extraction radius, forest type, and observed
AGB.

3 Results

3.1 AGB Distributions by Forest Type Both NRF
and PEF were stratified into the three forest types where
the stratification was conducted simply at a per-ha-level
based on species basal area (Table 1). Total AGBs across
all forest types were slightly greater in the NRF than the
PEF, while standard deviations were similar (Table 1).
At the forest type level, AGB in the hardwood forest
type in the NRF was notably greater than the PEF,
though sample sizes were quite small on the PEF. AGB
in the NRF was distributed approximately symmetrical,
while the PEF was skewed to the right (data not shown).

In the PEF, a limited number of plots had AGBs greater
than 200 tonnes ha-1.

3.2 Model Development Boosted regression trees
consistently identified q45LiDAR (covariate #9, Table
2) as an influential covariate at all extraction radii for
both forests, except for the 15 m LiDAR extraction ra-
dius at PEF. Other covariates identified included
q85LiDAR, maxCHT, and q50CHT (see Table 2 for vari-
able definitions). While the second most important co-
variate varied between forest and LiDAR extraction ra-
dius, the pair of variables, q45LiDAR and q50CHT, had
the best overall performance of any pair of covariates and
were, therefore, used to fit Equation 1 to the observed
AGB data from both NRF and PEF at all LiDAR ex-
traction radii. Random effects for forest type were only
significant for the intercept term (β0). The R2 for the re-
sulting NLME models ranged from 0.61 to 0.68 at NRF
and from 0.40 to 0.48 at PEF (Table 3). RMSEs ranged
from 33.4 – 37.0 tonnes ha-1 at NRF and from 40.6 to
45.0 tonnes ha-1 at PEF (Table 3). At NRF, the models
based on the 10 m LiDAR extraction radius performed
best, while the models based on the 20 m LiDAR ex-
traction radius performed best at PEF (Table 3).

Similarly, in preliminary analyses, RF selected
q45LiDAR as a predictive covariate in all RFNRF mod-
els, while q85LiDAR was selected as a predictive co-
variate in all RFPEF models for all LiDAR extraction
radii. Again, the secondary variables selected by RF var-
ied by forest and extraction radius, but were similar to
those identified by boosted regression, with q45LiDAR
and q50CHT being present in most RF models on both
forests. To simplify the model development process and
to facilitate model comparisons between forests across
LiDAR extraction radii, and fitting technique, the two
covariates, q45LiDAR and q50CHT (Table 2) were again
selected for use in the RF models along with forest type.
The resulting RF models had a range of R2s of 0.82 –
0.85 on NRF and 0.80 – 0.84 on PEF (Table 3). RM-
SEs ranged from 22.8 – 25.5 tonnes ha-1 on NRF and
from 23.8 – 26.7 tonnes ha-1 on PEF (Table 3). For both
forests, the RF models performed superior to the NLME
models. As with the NLME models, the RF model based
on 10 m extraction radius performed best on NRF, while
the 10 m extraction radius was the poorest fit on PEF,
and all other extraction radii models performed about
the same. It should be noted that differences were small
for both modeling types at both forests across all ex-
traction radii, and, based on equivalence tests, all pre-
dictions were essentially identical to field measurements
(Table 4).

Overall prediction bias in AGB was negligible, be-
tween -0.31 and -0.14 tonnes ha-1 for the NLME models
on NRF and between -0.50 and 0.33 tonnes ha-1 (nega-
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Table 3: Goodness of fit statistics by fitting and testing data source, LiDAR extraction radius, and modeling approach.
NRF is the Noonan Research Forest and PEF is the Penobscot Experimental Forest, while NLME is nonlinear mixed
effects models and RF is random forest models. Negative values in mean bias (MB) indicate overestimation by
models. RMSE is root mean square error and | MB | is the absolute mean bias. The units are tonnes ha-1.

Data Source Fit NLME Random Forest
Model Test Statistic 10 15 20 25 30 10 15 20 25 30

NRF NRF

R2 0.68 0.67 0.64 0.63 0.61 0.85 0.84 0.83 0.82 0.82
RMSE 33.4 34.4 35.5 36.4 37.0 22.8 23.5 24.3 24.9 25.5
MB -0.3 -0.3 -0.2 -0.2 -0.1 -0.11 -0.07 -0.05 -0.01 -0.1
|MB| 25.9 26.8 27.8 28.5 29.1 17.7 18.2 19.1 19.6 20.0

NRF PEF

R2 0.4 0.48 0.48 0.47 0.46 0.35 0.37 0.39 0.39 0.39
RMSE 46.3 43.2 43.1 43.6 44.1 48.3 47.5 46.7 46.6 46.7
MB 3.56 5.36 7.12 6.93 7.84 14.4 14.51 15.03 14.52 14.36
|MB| 36.2 32.7 32.4 32.9 32.9 36.0 35.4 35.4 35.2 35.2

PEF PEF

R2 0.43 0.53 0.54 0.54 0.53 0.8 0.84 0.83 0.84 0.84
RMSE 45.4 41 40.6 40.8 41.1 26.7 24.3 24.7 23.8 24.3
MB 0.33 -0.2 -0.5 -0.5 -0.6 -0.07 0.16 0.08 0.15 0.34
|MB| 35.5 32.2 31.8 31.8 31.7 18.7 16.6 17.3 16.7 17.1

PEF NRF

R2 0.64 0.58 0.59 0.58 0.58 0.62 0.57 0.53 0.51 0.49
RMSE 35.8 38.7 38.1 38.5 38.5 36.6 38.9 40.7 41.8 42.5
MB 5.42 11.7 8.2 7.42 7.42 -5.39 -11.9 -14.1 -15.4 -15.5
|MB| 27.8 29.7 29.4 29.8 29.8 28.9 31.4 32.7 33.5 34.0

tive values indicated overestimation) for the PEF. Biases
associated with the RF models were smaller in magni-
tude (1/3 or smaller; Table 4). While overall prediction
bias was small, it was not constant across the range of
observed AGB (Figs. 2A and 2B for NRF and Figs. 3C
and 3D for PEF). For both forests and both modeling
approaches, biases became increasingly positive (under-
prediction) as observed AGB increased.

3.3 Fixed versus Variable Radius Field Plots
The NLME model described above was fitted to the sub-
set of 84 grid points at NRF where both variable-radius
inventory plots and fixed-area PSPs were present using
a 10 m LiDAR extraction radius. Figure 4 shows AGB
from variable radius inventory plots vs AGB from fixed-
area PSPs for both observed field values and LiDAR
predicted values. On average, the AGB estimates from
the fixed-area PSPs were slightly larger than the values
obtained from variable-radius inventory plots and this
difference increased near the upper end of the range of
AGB (failed to reject null hypothesis of dissimilarity at
p = .05 and region of similarity = .25; Fig. 4) . The
LiDAR predicted values showed similar results with less
bias near the upper end of the AGB range. As with
observed AGB, the predicted AGBs from the two mod-

els were dissimilar (null hypothesis of dissimilarity not
rejected at p=.05); however, equivalence tests showed
similarity between predictions from the NLME based on
variable-radius plots and AGB observed on the fixed-
area plots and similarity between predictions from the
NLME based of fixed-area plots and AGB observed on
the variable-radius plots.

3.4 Model Evaluation Although both model fitting
procedures performed well locally, the RF model had
weaker agreement with the independent test data (Table
3). NLME performance, when applied to the other for-
est, was similar to the performance of the NLME model
fitted locally. R2, RMSE, and MB were all nearly equiv-
alent for both forests when comparing local versus non-
local model statistics (Table 3). RF performance was
lower when applied non-local versus local (Table 3); how-
ever, RF performance was nearly on par with the NLME
performance when applied non-locally. At the 10 m ex-
traction radius, non-local models performed similar to
the local models (Table 4), but all other extraction radii
were dissimilar. Even though the fit statistics associated
with the RF models were substantially better than those
associated with NLME, the predictions for both models
were equivalent at all extraction radii.
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Table 4: Equivalence test results for mean differences between aboveground biomass (tonnes ha-1) at the 95%
significance level. The null hypothesis of an equivalence test is that the two values are dissimilar (i.e., rejection of
the test indicates similar values). The mean differences, standard deviations (in parentheses), and magnitudes (%
standard deviation) of the region of similarity (in square brackets) are also given. Abbreviations are nonlinear mixed
effects (NLME), random forest (RF), Noonan Research Forest (N), and Penobscot Experimental Forest (P)

Equivalence Test Statistic LiDAR Extraction Radius
10 15 20 25 30

Field

NLMEN/N+P/P

H0 Reject Reject Reject Reject Reject
Mean Diff. -0.26 -0.28 -0.25 -0.21 -0.18
Std Dev 34.5 34.95 35.92 36.74 37.37
Region of Sim 15% 10% 10% 10% 10%

NLMEN/P+P/N

H0 Reject Reject Reject Reject Reject
Mean Diff. 5.27 11.21 8.12 7.38 6.45
Std Dev 36.34 37.41 37.66 38.23 38.72
Region of Sim 25% 40% 30% 30% 25%

RFN/N+P/P

H0 Reject Reject Reject Reject Reject
Mean Diff. -0.10 -0.05 -0.04 0.01 -0.07
Std Dev 23.09 23.57 24.36 24.83 23.58
Region of Sim 15% 15% 15% 15% 15%

RFN/P+P/N

H0 Reject Reject Reject Reject Reject
Mean Diff. -3.87 -9.86 -11.89 -13.01 -13.24
Std Dev 37.41 38.43 39.44 40.07 40.78
Region of Sim 20% 35% 40% 45% 45%

NLMEN/N+P/P

NLMEN/P+P/N

H0 Reject Not rej. Not rej. Not rej. Not rej.
Mean Diff. 5.54 11.06 8.37 7.59 6.62
Std Dev 11.06 11.06 10.91 10.08 9.66
Region of Sim 50% ≤50% ≤50% ≤50% ≤50%

RFN/N+P/P

H0 Reject Reject Reject Reject Reject
Mean Diff. 0.16 0.22 0.21 0.21 0.11
Std Dev 14.96 14.84 14.87 15.18 15.41
Region of Sim 25% 25% 25% 20% 20%

RFN/P+P/N

H0 Reject Not rej. Not rej. Not rej. Not rej.
Mean Diff. -3.60 -9.59 -11.63 -12.89 -13.07
Std Dev 13.34 17.99 17.99 17.92 18.15
Region of Sim 40% ≤50% ≤50% ≤50% ≤50%

NLMEN/P+P/N

RFN/N+P/P

H0 Reject Not rej. Not rej. Not rej. Not rej.
Mean Diff. -5.38 -11.27 -8.16 -7.38 -6.51
Std Dev 17.94 19.31 18.24 18.21 18.14
Region of Sim 45% ≤50% ≤50% ≤50% ≤50%

RFN/P+P/N

H0 Not rej. Not rej. Not rej. Not rej. Not rej.
Mean Diff. -9.14 -21.07 -20.00 -20.48 -19.69
Std Dev 18.04 21.42 20.78 20.22 19.45
Region of Sim ≤50% ≤50% ≤50% ≤50% ≤50%

RFN/N+P/P RFN/P+P/N

H0 Reject Not rej. Not rej. Not rej. Not rej.
Mean Diff. -3.77 -9.81 -11.85 -13.11 -13.17
Std Dev 19.45 19.84 20.51 20.59 21.24
Region of Sim ≤50% ≤50% ≤50% ≤50% ≤50%
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Figure 2: Observed (field-measured) above ground biomass (AGB; tonnes ha-1) versus predicted AGB: A) Noonan
Research Forest (NRF) observations versus predictions from nonlinear mixed effects (NLME) model fitted to NRF
data; B) NRF observations versus predictions from random forest (RF) model fitted to NRF data; C) Penobscot
Experimental Forest (PEF) observations versus predictions from NLME model fitted to NRF data; and D) PEF
observations versus predictions from RF model fitted to NRF data. All NRF models based on 10 m extraction
radius.

The only factor investigated that influenced model
residuals was field observed AGB (Figure 5). Model lo-
cale (local versus non-local) had minor influence as did
forest type, but extraction radii and location (PEF vs.
NRF) had virtually no influence on model residuals.

4 DISCUSSION
This analysis highlights numerous issues associated

with properly calibrating a robust AGB prediction model
using LiDAR and ground-based plot data. The accu-
racy of AGB prediction models did not strongly depend
on the statistical method, LiDAR metric extraction ra-
dius, and type of ground-based data used (Figure 5), but
was driven more by the forest type and the application
of a non-locally calibrated model. Although there were

key differences between the two study sites used in this
analysis including ground-based plot sampling method
(fixed- vs. variable-radius), LiDAR point density, and
acquisition date that might influence findings, the lim-
ited influence of model source in the generalized boosted
regression would suggest these factors are of minimal im-
portance (Figure 5). In addition, these study site differ-
ences in this analysis were likely reflective of real-world
conditions as rarely do research and operational applica-
tions perfectly align. At one extreme, this analysis might
represent the worst case scenario in terms of model ac-
curacy and bias, but is more likely a reflection of general
operating conditions in reality.

Although our study raises many more question than
it answers, there is a general need to better evaluate
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Figure 3: Observed (field-measured) above ground biomass (AGB; tonnes ha-1) versus predicted AGB: A) Noo-
nan Research Forest (NRF) observations versus predictions from nonlinear mixed effects (NLME) model fitted to
Penobscot Experimental Forest (PEF) data; B) NRF observations versus predictions from random forest (RF) model
fitted to PEF data; C) PEF observations versus predictions from NLME model fitted to PEF data; and D) PEF
observations versus predictions from RF model fitted to PEF data. All PEF models based on 20 m extraction radius.

the performance of remote sensing technology on inde-
pendent datasets as done in this analysis. It is impor-
tant to note that AGB was used in this analysis as it is
consistent with previous remote sensing studies (Chen
et al. 2012; Li et al. 2008). AGB is computed based
only on DBH and species group, which effectively ig-
nores tree height information. However, we found sim-
ilar model performance using total stem volume in our
analysis and consequently believe that the selection of
dependent variable has limited implications for our find-
ings. This might not be the case in regions where stem
volume and total AGB are as highly correlated as they
are in the Acadian Region (r = 0.88).

Overall, using a strong network of ground-based mea-
surement plots, the calibrated prediction models showed
a high correlation between field-measured and model

predicted AGB (Table 5) as previously noted in numer-
ous similar studies (Chen et al. 2012; Li et al. 2008).
However, to properly use the parametric techniques for
model calibration, the data need to be carefully exam-
ined as most LiDAR metric-derived covariates tend to
be highly correlated and some covariates do not meet
the normal distribution criterion (Hayashi et al. 2014;
Hudak et al. 2008; Stone et al. 2011), though most para-
metric techniques are relatively robust for departures in
the assumption, especially with large datasets. Relation-
ships between AGB and LiDAR covariates also might
not show a linear trend (Packalen et al. 2011). To ac-
count for these issues, some previous studies have trans-
formed a dependent and/or independent variables (Li
et al. 2008; Means et al. 2000). One drawback to this
approach is that predicted AGB needs to be back trans-
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formed, which can result in model bias. In this study,
we chose a two-covariate NLME for calibrating a parsi-
monious AGB prediction model to avoid the potential of
transformation bias and multicollinearity. In this study,
although boosted regression trees tended to select highly
correlated covariates, the fitted NLME models generally
had better model fits and prediction accuracy when the
models were used to predict AGB in another forest. On
the other hand, nonparametric techniques, such as RF,
generally show robustness against correlation and nor-
mality issues.

However, for either modeling technique, other issues
remain, particularly robust covariate selection criteria
and determination of an optimal number of covariates
(Vauhkonen et al. 2010). Regardless of correlation and
normality issues, there is a need to balance model pre-
diction accuracy with parsimony to avoid possible model
overfit issues. In preliminary analysis, we found that
NLME models were marginally improved when using
3, 4, or even 5 covariates. However, NLME might not
converge when additional covariates were added in the
model. In this study, a random effect was applied to only
one coefficient (Equation 1). Additional random effects
could have been used; however, convergence would likely
again be an issue. In addition, while boosted regression
trees tended to select q45LiDAR as a key covariate for
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Figure 4: Observed and predicted above ground biomass
(AGB; tonnes ha-1) on fixed-area versus variable-radius
field plots from Noonan Research Forest. Predictions
based on nonlinear mixed effects models and a 10 m
extraction radius.

both NLMENRF and NLMEPEF models, the additional
covariates tended to vary every time boosted regression
trees were applied to the different forests and LiDAR
plot radii. Similarly, the RF process tended to select
eith q85LiDAR or q45LiDAR as the primary variable
with various other metrics selected as secondary.

Interestingly, q45LiDAR tended to be the primary
covariate selected irrespective of the forest, LiDAR met-
ric extraction radius, and statistical method. This high-
lights the robustness of height percentiles when com-
pared to absolute and relative point density measures,
even across a wide range of stand structures as used
in this analysis. Previous analyses have shown height
metrics to be less sensitive to plot size (e.g. Frazer et
al. 2011), georeferencing errors (e.g. Gobakken and Næs-
set 2009), and laser scan angle (e.g. Holmgren and Lind-
berg 2013), which is further confirmed by this analysis
given the differences in study sites and available LiDAR
data. When combined with the maximum plot canopy
height data, q45LiDAR generally corresponded to a rel-
ative canopy height of 0.35–0.40 (data not shown). This
value is relatively consistent with the recommended rel-
ative height of 0.3–0.4 for importance sampling to de-
termine individual tree volume (see Figure 1 in Wood
et al. 1990). This value is considered important because
it is related to the centroid of tree volume (Wood et
al. 1990), which would suggest that q45LiDAR would
have some biological basis for application and should be
further examined across a range of forest types.

Data Source

Fitting Method

Model Source

Extraction Radius

Forest Type

Model Locale

Field Biomass

Relative In!uence

0 20 40 60 80 100

Figure 5: Relative influence by factor based on boosted
regressions on model residuals. Factors included ob-
served field biomass, model locale (local vs. non-local),
forest type (hardwood, softwood, mixedwood), LiDAR
extraction radius (10, 15, 20, 25, 30 m), model source,
fitting method (nonlinear mixed effects vs. random
forest), and data source (Noonan Research Forest vs.
Penobscot Experimental Forest).
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Both NLME and RF model performances varied by
the plot radius used for the LiDAR metrics extraction.
In general, a model based on 10 m LiDAR plot radius
had the best model fit among NLMENRF and RFNRF

models. This is likely because of the high pulse density
LiDAR data collected in the NRF. In contrast, the low
pulse density LiDAR collected at the PEF would need to
use a larger area to obtain comparable LiDAR metrics
extraction. For example, a NLMEPEF model based on a
25 m LiDAR plot radius had the best model fit among
NLMEPEF models. Also, the RFNRF-ALL tended to se-
lect larger LiDAR plot radii, while RFPEF-ALL tended
to select smaller LiDAR plot radii. However, a primary
point from this analysis was that prediction models with
higher model fits may not necessarily predict at greater
accuracy levels when applied to new locations. This
would be another reason that it should be beneficial to
utilize as many potential covariates as a modeling tech-
nique could handle.

To our knowledge, there has been limited work on op-
timal LiDAR plot size, but Magnussen and Boudewyn
(1998) and Gobakken et al. (2013) did suggest that the
plot size between field and LiDAR be same. Although
this suggestion is reasonable if field plots are based on
fixed-radius plots, the NLMEPEF/PEF with a 20 m Li-
DAR plot radius had the best R2and RMSE, while the
radius for the 0.08 ha circular plots was only appro-
priately 16 m. All extraction radii, other than 10 m,
performed equally well. Frazer et al. (2011) reported
that smaller field plots tended to be greatly affected by
plot positioning errors during calibration data collection,
while Dalponte et al. (2011) found that positioning er-
rors up to 5 m led to marginal differences in R2 values
and RMSEs in developed models. Ruiz et al. (2014) in-
dicated that, while a combination of larger field plots
and higher pulse density data resulted in greater model
fits, field plot sizes generally had greater influence than
pulse density on model fits. On the other hand, field
plots based on variable-radius sampling like NRF would
not have a comparable size for LiDAR metrics extrac-
tion, unless truncated angle count samples as suggested
by Maltamo et al. (2007), were used. Although the use of
variable-radius plots may complicate the model calibra-
tion, they had a limited influence on model accuracy as
the R2 values were generally consistent between the NRF
and PEF and did not change drastically across the range
of LiDAR metric extraction radii evaluated at the NRF.
In fact, when variable- and fixed-radius plots were com-
pared at the same forest and LiDAR acquisition, min-
imal differences were found. As discussed above, much
more important factors other than sampling method are
influencing the differences between model performances
at the two study sites.

Although the use of fixed-radius plots has been much
more common for LiDAR model calibration (e.g. Chen
et al. 2012; Hayashi et al. 2014; Li et al. 2008), we be-
lieve variable-radius are a viable alternative given the
strong performance of the NRF model in this analysis,
which is consistent with the findings of another recent
analysis (e.g. Scrinzi et al. 2015). In general, fixed- and
variable-radius both provide unbiased estimates of forest
structure and composition, but primarily differ in the
time necessary to complete field sampling. For exam-
ple, Rice et al. (2014) reported that fixed- and variable-
radius methods provided similar estimates of plot basal
area and volume in diverse stand conditions in northern
Maine despite drastic differences in plot measurement
time. Previous LiDAR analyses have also used multi-
ple sampling methods for LiDAR calibration and evalua-
tion with no reported confounding influence of sampling
method. For example, Falkowski et al. (2010) collected
calibration data using fixed-radius plots and the devel-
oped models were validated using an independent test
data collected using variable-radius sampling. Conse-
quently, we believe the differences in sampling methods
used at the NRF and PEF have a limited influence on
our study’s findings, which is further supported by the
relative influence values presented in Figure 5.

5 Conclusions

For future work, evaluating the relationship between
field and LiDAR plot sizes to improve model accuracy
needs to be investigated. This study showed that LiDAR
metrics extraction from a low pulse density data ap-
peared to require larger extraction radii to capture forest
structure attributes, while a high density LiDAR data
seemed to require a smaller LiDAR plot radius. Also, al-
though calibration data was collected using either fixed-
and variable-radius methods, these differences did not
seem to be confounded for model development in this
study and only minimal differences were observed when
both types of plot data were available at the same for-
est. Further investigation for usability of variable-radius
sampling is necessary, but it appears quite viable based
on the results of this analysis. For example, Falkowski
(2015) suggests that LiDAR metrics be weighted pro-
portionally to return height when using variable-radius
sampling.

More importantly, this study investigated different
statistical techniques on AGB prediction accuracy at two
study sites. In general, both NLME and RF produced
well-behaved models that relied on a minimal number of
covariates (2) combined with forest type. While the var-
ious methods had similar model fit statistics, there were
drastic differences between model performances when
applied to an independent dataset. For model parame-
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terization, RF was generally found superior to NLME.
However, for application purposes, NLME models gen-
erally showed prediction performances on par with their
fitting performances, while RF performance was sub-
stantially degraded relative to fit performance. In ad-
dition, RF models can never produce values outside the
range of values observed in the training dataset, and
this greatly reduced the performance of RFPEF models
on NRF. Irrespective of the statistical method used, a
strong network of ground-based plots that cover the full
range of observed variation are necessary and although
stratification is likely an efficient method for achieving
this,forest type was not an effective predictor in this
analysis, possibly due to limited numbers of plots in
some forest types. Although not suggested by Figure
5, an important limitation of this analysis is that addi-
tional factors not accounted for in the assessment may
be causing these observed differences between the two
locations.

Finally, q45LiDAR was consistently selected as the
top covariate across LiDAR metric extraction radii, for-
est types, and statistical method, which indicates it is
a robust and important prediction. The variable does
have a biological basis and should be further examined
across a greater range of forest types.
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