Alternative Method for Determining Trunk Diameter at Different Heights on a Standing Tree

Madina H. Abishova, Brad M. Kard, Kamil H. Hasanov, Zohrab S. Ismailov, Aygun X. Bagirova, Valeh K. Shukurov, Tarana S. Babakishiyeva, Iqbal A. Aliyev, Sima Z. Hasanova, Jeyhuna A. Hajiyeva, Vidadi S. Samadov

Abstract


Reliably determining trunk volume of a growing tree and accurately measuring changing diameters along the trunk at different heights are important data to foresters world-wide.  Existing methods for determining trunk diameter of a growing tree assume the horizontal cross-section is a circle.  However, to an observer standing beside a tree and looking upwards along the trunk, the imaginary cross-section of the trunk does not look like a circle but appears elliptical.  As the observer stands closer to the tree and the higher the established point where the diameter of the trunk is measured, the elliptical shape of the cross-section becomes more pronounced.  Conversely, the smaller the tree and the farther the observer stands from the tree, the imaginary cross-section of the trunk becomes more circular.  In this paper we describe a method that makes it possible to accurately determine the diameter of a trunk regardless of the above two distance factors.  Using the mathematical parameters of an ellipse, the objective of this study was to provide an accurate method to calculate the diameter at any height on the trunk.

Keywords


Calipers, dbh, diameter-at-breast-height, forest measurement and inventory, laser mensuration, error estimation

Full Text:

PDF

References


Abdi, H. 2007. Coefficients of correlation, alienation and determination. In: N. Salkind (Ed.), Encyclopedia of Measurement and Statistics. Sage Publishers, Thousand Oaks, CA, USA.

Ahola, M.J., T. Heikkilä, J. Raitila, T. Sipola, and J. Tenhunen. 2021. Estimation of breast height diameter and trunk curvature with linear and single-photon LiDARs. Annals of Forest Science 78: 79. https://doi.org/10.1007/s13595-021-01100-0. Accessed 09-29-2022.

Bauwens, S., H. Bartholomeus, K. Calders, and P. Lejeune. 2016. Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning. Forests 7(6): 127. https://doi.org/10.3390/f7060127. Accessed 09-29-2022.

Bewick, V., L. Cheek, and J. Ball. 2003. Correlation and regression. Journal of Statistics Review, Critical Care 7: 451. https://doi.org/10.1186/cc2401. Accessed 10-10-2022.

Bienert, A., S. Scheller, E. Keane, F. Mohan, and C. Nugent. 2007. Tree detection and diameter estimations by analysis of forest terrestrial laserscanner point clouds. International Society for Photogrammetry and Remote Sensing (ISPRS), Volume XXXVI, Part 3/W52: 50?55.

?er?ava, J., M. Mokroš, J. Tu?ek, M. Antal, and Z. Slatkovská. 2019. Processing chain for estimation of tree diameter from GNSS-IMU-Based mobile laser scanning data. Remote Sensing 11(6): 615. https://doi.org/10.3390/rs11060615. Accessed 09-29-2022.

Eliopoulos, J. N., Y. N. Shen, M. L. Nguyen, V. Arora, Y. Zhang, G. Shao, K. Woeste, and Y.-H. Lu. 2020. Rapid tree diameter computation with terrestrial stereoscopic photogrammetry. Journal of Forestry 118(4): 355?361. https://doi/10.1093/jofore/fvaa009. Accessed 09-29-2022.

Elzinga, C., R. C. Shearer, and G. Elzinga. 2005. Observer variation in tree diameter measurements. Western Journal of Applied Forestry 20(2): 134?137. https://doi.org/10.1093/wjaf/20.2.134. Accessed 09-29-2022.

Fan, G., F. Chen, Y. Li, B. Liu, and X. Fan. 2019. Development and testing of a new ground measurement tool to assist in forest GIS surveys. Forests 10(8): 643. https://doi.org/10.3390/f10080643. Accessed 09-29-2022.

Fang, R., and B. M. Strimbu. 2017. Stem measurements and taper modeling using photogrammetric point clouds. Remote Sensing 9: 716. https://doi:10.3390/rs9070716. Accessed 10-20-2022.

Guillemette, F., and M.-C. Lambert. 2009. Relative effects of dendrometers on the estimation of diameter at breast height, stand basal area and stand volume in uneven-aged northern hardwoods. The Forestry Chronicle 85(3): 446?452. https://doi.org/10.5558/tfc85446-3. Accessed 09-29-2022.

Husch, B., T. W. Beers, and J. A. Kershaw, Jr. 2003. Forest Mensuration (4th ed.). John Wiley & Sons, Inc., Hoboken, NJ, USA.

Kershaw, J. A., Jr., M. J. Ducey, T. W. Beers, and B. Husch. 2017. Forest Mensuration (5th ed.). John Wiley & Sons, Inc. Hoboken, NJ, USA.

Liang, X., J. Hyyppä, A. Kukko, H. Kaartinen, A. Jaakkola, and X. Yu. 2014a. The use of a mobile laser scanning system for mapping large forest plots. IEEE Geoscience Remote Sensing Letter 11: 1504?1508. https://doi/10.1109/LGRS.2013.2297418. Accessed 09-29-2022.

Liang, X., A. Jaakkola, Y. Wang, J. Hyyppä, E. Honkavaara, J. Liu, and H. Kaartinen. 2014b. The use of a hand-held camera for individual tree 3D mapping in forest sample plots. Remote Sensing 6(7): 6587?6603. https://doi.org/10.3390/rs6076587. Accessed 09-29-2022.

Liang, X., V. Kankare, X. Yu, J. Hyyppä, and M. Holopainen. 2014c. Automated stem curve measurement using terrestrial laser scanning. IEEE Transactions on Geoscience and Remote Sensing 52(3): 1739?1748. https://doi: 10.1109/TGRS.2013.2253783. Accessed 09-29-2022.

Luoma, V., N. Saarinen, M. A. Wulder, J. C. White, M. Vastaranta, M. Holopainen, and J. Hyyppä. 2017. Assessing precision in conventional field measurements of individual tree attributes. Forests 8(2): 38. https://doi.org/103390/f8020038. Accessed 09-29-2022.

Mokroš, M., X. Liang, P. Surový, P. Valent, J. ?er?ava, F. Chudý, D. Tunák, S. Salo?, and J. Mergani?. 2018. Evaluation of close-range photogrammetry image collection methods for estimating tree diameters. ISPRS International Journal of Geo-Information 7(3): 93. https://doi.org/10.3390/ijgi7030093. Accessed 09-29-2022.

Molinier, M., C. A. Lopéz-Sánchez, T. Toivanen, I. Korpela, J. J. Corral-Rivas, R. Tergujeff, and T. Häme. 2016. Relasphone-mobile and participative in-situ forest biomass measurements supporting satellite image mapping. Remote Sensing 8(10): 869?891. https://doi.10.3390/rs8100869. Accessed 09-29-2022.

Pratihast, A. K., B. R. DeVries, V. Avitabile, S. De Bruin, L. Kooistra, M. Tekle, and M. Herold. 2014. Combining satellite data and community-based observations for forest monitoring. Forests 5(10): 2464?2489. https://doi.org/10.3390/f5102464. Accessed 09-29-2022.

Ringdahl, O., P. Hohnloser, T. Hellström, J. Holmgren, and O. Lindroos. 2013. Enhanced algorithms for estimating tree trunk diameter using 2D laser scanner. Remote Sensing 5(10): 4839?4856. https://doi.org/10.3390/rs5104839. Accessed 09-29-2022.

Sun, L., L. Fang, Y. Weng, and S. Zheng. 2020. An integrated method for coding trees, measuring tree diameter, and estimating tree positions. Sensors 20(1): 144. https://doi.10.3390/s20010144. Accessed 10-20-2022.

van Laar, A., and A. Akça. 1997. Forest Mensuration. Cuvillier Verlag Publishers, Goettingen, Germany.

Vastaranta, M., E. G. Latorre, V. Luoma, N. Saarinen, M. Holopainen, and J. Hyyppä. 2015. Evaluation of a smartphone app. for forest sample plot measurements. Forests 6(4): 1179?1194. https://doi.org/10.3390/f6041179. Accessed 09-29-2022


Refbacks

  • There are currently no refbacks.


   

© 2008 Mathematical and Computational Forestry & Natural-Resource Sciences